Exam 34: Sum and Difference Formulas

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use a graphing utility to select the correct graph of ​ y1y _ { 1 } and y2y _ { 2 } in the same viewing window.Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } .Explain your reasoning.​ y1=cos(x+4),y2=cosx+cos4y _ { 1 } = \cos ( x + 4 ) , y _ { 2 } = \cos x + \cos 4

(Multiple Choice)
4.8/5
(32)

Simplify the expression algebraically.​ sin(7x+7y)+sin(7x7y)\sin ( 7 x + 7 y ) + \sin ( 7 x - 7 y )

(Multiple Choice)
5.0/5
(27)

Simplify the expression algebraically.​ cos(6x+9y)+cos(6x9y)\cos ( 6 x + 9 y ) + \cos ( 6 x - 9 y )

(Multiple Choice)
4.9/5
(38)

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b),a=13,b=6,B=3C = \arctan ( a / b ) , a = 13 , b = 6 , B = 3 to rewrite the trigonometric expression in the following form.​ y=a2+b2cos(BθC)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.9/5
(38)

Simplify the following expression algebraically.​ 7cos(π+x)7 \cos ( \pi + x )

(Multiple Choice)
4.8/5
(31)

Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) ,where C=arctan(b/a),a=5,b=8,B=1C = \arctan ( b / a ) , a = 5 , b = 8 , B = 1 ,to rewrite the trigonometric expression in the following form.​ y=a2+b2sin(Bθ+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C )asinBθ+bcosBθa \sin B \theta + b \cos B \theta

(Multiple Choice)
4.8/5
(39)

Find the expression as the cosine of an angle. ​​ cosπ5cosπ3sinπ5sinπ3\cos \frac { \pi } { 5 } \cos \frac { \pi } { 3 } - \sin \frac { \pi } { 5 } \sin \frac { \pi } { 3 }

(Multiple Choice)
4.8/5
(34)

Simplify the expression algebraically. 4tan(π4θ)4 \tan \left( \frac { \pi } { 4 } - \theta \right)

(Multiple Choice)
4.8/5
(30)

Write the given expression as an algebraic expression. cos(arccos x - arcsin x)

(Multiple Choice)
4.8/5
(33)

A weight is attached to a spring suspended vertically from a ceiling.When a driving force is applied to the system,the weight moves vertically from its equilibrium position,and this motion is modeled by​ y=18sin2t+16cos2ty = \frac { 1 } { 8 } \sin 2 t + \frac { 1 } { 6 } \cos 2 t where y is the distance from equilibrium (in feet)and t is the time (in seconds). Find the amplitude of the oscillations of the weight. ​

(Multiple Choice)
4.8/5
(34)

Write the given expression as the tangent of an angle. tan3x+tan4x1tan3xtan4x\frac { \tan 3 x + \tan 4 x } { 1 - \tan 3 x \tan 4 x }

(Multiple Choice)
4.8/5
(28)

Find the exact value of the given expression.​ cos(300+135)\cos \left( 300 ^ { \circ } + 135 ^ { \circ } \right)

(Multiple Choice)
4.8/5
(44)

Simplify the following expression algebraically.​ 6tan(π+θ)6 \tan ( \pi + \theta )

(Multiple Choice)
4.7/5
(36)

Find the expression as the sine or cosine of an angle.​ cos9xcos5y+sin9xsin5y\cos 9 x \cos 5 y + \sin 9 x \sin 5 y

(Multiple Choice)
4.8/5
(41)

Find the exact value of the given expression. cos(120+315)\cos \left( 120 ^ { \circ } + 315 ^ { \circ } \right)

(Multiple Choice)
4.9/5
(28)

Use the formula asinBθ+bcosBθ=a2+b2cos(BθC)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \cos ( B \theta - C ) ,where C=arctan(a/b)C = \arctan ( a / b ) C=arctan(a/b),a>0C = \arctan ( a / b ) , a > 0 ,to rewrite the trigonometric expression in the form asinBθ+bcosBθa \sin B \theta + b \cos B \theta ​ 9 cos(θπ4)\cos \left( \theta - \frac { \pi } { 4 } \right)

(Multiple Choice)
4.8/5
(35)

Find the expression as the sine of an angle.​ sin5cos1.7cos5sin1.7\sin 5 \cos 1.7 - \cos 5 \sin 1.7

(Multiple Choice)
4.9/5
(28)

Simplify the expression algebraically. 5sin(π6+x)5 \sin \left( \frac { \pi } { 6 } + x \right)

(Multiple Choice)
4.9/5
(33)

Simplify the following expression algebraically.​ 4sin(3π2+θ)4 \sin \left( \frac { 3 \pi } { 2 } + \theta \right)

(Multiple Choice)
4.7/5
(25)

Find the exact value of sin(u+v)\sin ( u + v ) given that sinu=35\sin u = \frac { 3 } { 5 } and cosv=2425\cos v = - \frac { 24 } { 25 } .(Both u and v are in Quadrant II. )

(Multiple Choice)
4.7/5
(37)
Showing 21 - 40 of 62
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)