Exam 31: Using Fundamental Identities

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

​Use the given values to evaluate (if possible)three trigonometric functions cscθ,tanθ,cosθ\csc \theta , \tan \theta , \cos \theta . ​​ sinθ=1,cotθ=0\sin \theta = - 1 , \cot \theta = 0

(Multiple Choice)
4.8/5
(33)

If sinx=12 and cosx=32\sin x = \frac { 1 } { 2 } \text { and } \cos x = \frac { \sqrt { 3 } } { 2 } ,evaluate the following function. ​cot x ​

(Multiple Choice)
4.8/5
(40)

Multiply;then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.​ (cotx+1)2( \cot x + 1 ) ^ { 2 }

(Multiple Choice)
4.8/5
(39)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where 0<x<π20 < x < \frac { \pi } { 2 } . x216,x=4secθ\sqrt { x ^ { 2 } - 16 } , x = 4 \sec \theta

(Multiple Choice)
4.7/5
(35)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where 0<x<π20 < x < \frac { \pi } { 2 } . 25x2+36,5x=6tanθ\sqrt { 25 x ^ { 2 } + 36 } , 5 x = 6 \tan \theta

(Multiple Choice)
4.7/5
(43)

Perform the multiplication and use the fundamental identities to simplify.​ (sinxcosx)2( \sin x - \cos x ) ^ { 2 }

(Multiple Choice)
4.8/5
(40)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where π2<x<π2- \frac { \pi } { 2 } < x < \frac { \pi } { 2 } .Then find sin θ and cos θ. 4=16x2,x=4sinθ4 = \sqrt { 16 - x ^ { 2 } } , x = 4 \sin \theta

(Multiple Choice)
4.9/5
(38)

Use the fundamental identities to simplify the expression.​ sinθtanθ\frac { \sin \theta } { \tan \theta }

(Multiple Choice)
4.9/5
(34)

If x = 4 cot θ,use trigonometric substitution to write 16+x2\sqrt { 16 + x ^ { 2 } } as a trigonometric function of θ,where 0 < θ < π.

(Multiple Choice)
4.9/5
(41)

Use the given values to evaluate (if possible)three trigonometric functions cos x,sin x,tan x.​ secx=4,sinx>0\sec x = 4 , \sin x > 0 ​ ​

(Multiple Choice)
4.8/5
(33)

Rewrite the expression as a single logarithm and simplify the result.​ lncosxlnsinx\ln | \cos x | - \ln | \sin x |

(Multiple Choice)
4.9/5
(27)

By using a graphing utility to complete the following table.Round your answer to four decimal places. x 0.2 0.4 0.6 0.8 1 1.2 1.4 \@cdots \@cdots \ldots \@cdots \@cdots \@cdots \@cdots \@cdots \@cdots \ldots \ldots \@cdots \@cdots \@cdots y1=secxcosx,y2=sinxtanxy _ { 1 } = \sec x - \cos x , y _ { 2 } = \sin x \tan x

(Multiple Choice)
4.9/5
(32)

Use the given values to evaluate (if possible)three trigonometric functions csc x,tan x,cot x.​ cos(π2x)=817,cosx=1517\cos \left( \frac { \pi } { 2 } - x \right) = \frac { 8 } { 17 } , \cos x = \frac { 15 } { 17 }

(Multiple Choice)
4.8/5
(42)

By using a graphing utility to complete the following table.Round your answer to four decimal places. x 0.2 0.4 0.6 0.8 1 1.2 1.4 \@cdots \@cdots \@cdots \@cdots \@cdots \@cdots \@cdots \@cdots \@cdots \@cdots \ldots \ldots \@cdots \@cdots y1=cos(π2x),y2=sinxy _ { 1 } = \cos \left( \frac { \pi } { 2 } - x \right) , y _ { 2 } = \sin x

(Multiple Choice)
4.8/5
(35)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where 0<θ<π20 < \theta < \frac { \pi } { 2 } . 369x2,x=2cosθ\sqrt { 36 - 9 x ^ { 2 } } , x = 2 \cos \theta

(Multiple Choice)
4.8/5
(39)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where 0<x<π20 < x < \frac { \pi } { 2 } .​ 16x2,x=4cosθ\sqrt { 16 - x ^ { 2 } } , x = 4 \cos \theta

(Multiple Choice)
4.8/5
(27)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where 0<x<π20 < x < \frac { \pi } { 2 } . 6x2,x=6sinθ\sqrt { 6 - x ^ { 2 } } , x = \sqrt { 6 } \sin \theta

(Multiple Choice)
4.9/5
(37)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.​ sin(π2x)cscx\sin \left( \frac { \pi } { 2 } - x \right) \csc x

(Multiple Choice)
4.8/5
(37)

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent.​ sinα(cscαsinα)\sin \alpha ( \csc \alpha - \sin \alpha )

(Multiple Choice)
4.9/5
(38)

If x = 5 sin θ,use trigonometric substitution to write 25x2\sqrt { 25 - x ^ { 2 } } as a trigonometric function of θ,where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } .

(Multiple Choice)
4.8/5
(34)
Showing 21 - 40 of 60
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)