Exam 31: Using Fundamental Identities

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use fundamental identities to simplify the expression below and then determine which of the following is not equivalent. cosα(secαcosα)\cos \alpha ( \sec \alpha - \cos \alpha )

(Multiple Choice)
4.7/5
(36)

Use a calculator to demonstrate the identity for the value of θ.​ sin(θ)=sinθ,θ=258\sin ( - \theta ) = - \sin \theta , \theta = 258 ^ { \circ }

(Multiple Choice)
4.9/5
(41)

Rewrite the expression as a single logarithm and simplify the result.​ lnsecx+lnsinx\ln | \sec x | + \ln | \sin x |

(Multiple Choice)
4.9/5
(36)

Factor;then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.​ cot2αcot2αcos2α\cot ^ { 2 } \alpha - \cot ^ { 2 } \alpha \cos ^ { 2 } \alpha

(Multiple Choice)
4.9/5
(40)

Use the given values to evaluate (if possible)three trigonometric functions cotθ,secθ,cosθ\cot \theta , \sec \theta , \cos \theta .​ tanθ=4,cosθ<0\tan \theta = 4 , \cos \theta < 0

(Multiple Choice)
4.7/5
(33)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where π2<θ<π2- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } .Then find sin θ and cos θ.​ 4=64x2,x=8sinθ4 = \sqrt { 64 - x ^ { 2 } } , x = 8 \sin \theta

(Multiple Choice)
4.8/5
(44)

Which of the following is equivalent to the given expression? cos2x1+sinx\frac { \cos ^ { 2 } x } { 1 + \sin x }

(Multiple Choice)
4.9/5
(45)

Use the given values to evaluate (if possible)three trigonometric functions cos x,csc x,tan x.​ sinx=15\sin x = \frac { 1 } { 5 } , cosx>0\cos x > 0

(Multiple Choice)
4.7/5
(41)

Multiply;then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.​ (tanx+1)2( \tan x + 1 ) ^ { 2 }

(Multiple Choice)
4.9/5
(41)

Use the given values to evaluate (if possible)three trigonometric functions cosϕ,sinϕ,tanϕ\cos \phi , \sin \phi , \tan \phi .​ secϕ=34,cscϕ=355\sec \phi = \frac { 3 } { 4 } , \csc \phi = \frac { - 3 \sqrt { 5 } } { 5 }

(Multiple Choice)
4.8/5
(28)

If x = 6 sin θ,use trigonometric substitution to write 36x2\sqrt { 36 - x ^ { 2 } } as a trigonometric function of θ,where 0<θ<π20 < \theta < \frac { \pi } { 2 } .

(Multiple Choice)
4.9/5
(42)

Use the trigonometric substitution u = a csc θ,where 0 < θ < π/2 and a > 0 to simplify the expression u2a2\sqrt { u ^ { 2 } - a ^ { 2 } } . ​

(Multiple Choice)
4.9/5
(38)

Find the rate of change of the function f(x)=x+cosxf ( x ) = - x + \cos x . ​

(Multiple Choice)
4.9/5
(33)

Use the trigonometric substitution u = a sin θ,where - π/2 < θ < π/2 and a > 0 to simplify the expression a2u2\sqrt { a ^ { 2 } - u ^ { 2 } } . ​

(Multiple Choice)
4.9/5
(35)

If x = 3 cot θ,use trigonometric substitution to write 9+x2\sqrt { 9 + x ^ { 2 } } as a trigonometric function of θ,where 0<θ<π0 < \theta < \pi . ​

(Multiple Choice)
4.8/5
(35)

Use the trigonometric substitution u = a tan θ,where 0 < θ < π/2 and to simplify the expression a2+u2\sqrt { a ^ { 2 } + u ^ { 2 } } . ​

(Multiple Choice)
4.9/5
(39)

Use the given values to evaluate (if possible)three trigonometric functions cos x,sin x,cot x.​ tanx=940,secx=4140\tan x = \frac { 9 } { 40 } , \sec x = - \frac { 41 } { 40 }

(Multiple Choice)
4.9/5
(38)

Find the rate of change of the function f(x)=secx+cscxf ( x ) = \sec x + \csc x . ​

(Multiple Choice)
4.8/5
(42)

Use the given values to evaluate (if possible)two trigonometric functions tanφ\tan \varphi and cscψ\csc \psi .​ cotφ=5,sinψ=1010\cot \varphi = - 5 , \sin \psi = \frac { \sqrt { 10 } } { 10 }

(Multiple Choice)
4.9/5
(33)

Use the trigonometric substitution to rewrite the algebraic expression as a trigonometric function of θ,where 0<θ<π20 < \theta < \frac { \pi } { 2 } . 16x2,x=4sinθ\sqrt { 16 - x ^ { 2 } } , x = 4 \sin \theta

(Multiple Choice)
4.8/5
(29)
Showing 41 - 60 of 60
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)