Exam 8: The Geometry of Vector Spaces

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let H be the hyperplane through the points. Find a linear functional f and a real number d such that H = [f : d]. - [13],[34]\left[ \begin{array} { r } - 1 \\3\end{array} \right] , \left[ \begin{array} { r } 3 \\- 4\end{array} \right]

(Multiple Choice)
4.9/5
(31)

Use the barycentric coordinates with respect to S to determine if the point p is inside, outside, on a face, or on the edge of conv S which is a tetrahedron. - S={v1,v2,v3,v4}\mathrm { S } = \left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } , \mathbf { v } _ { 4 } \right\} Barycentric coordinates: (0,0,38,58)\left( 0,0 , \frac { 3 } { 8 } , \frac { 5 } { 8 } \right)

(Multiple Choice)
4.9/5
(33)

Determine whether the point p is in the convex hull of S. - S= ,,, = 2 2 1 ,= 0 3 -1 ,= 1 8 -6 ,= -1 2 4 ,= 1 3 0

(Multiple Choice)
4.9/5
(25)

Provide an appropriate response. -Pick a set SS of four distinct points in R3R ^ { 3 } such that aff SS is the plane 2x1+x23x3=142 x _ { 1 } + x _ { 2 } - 3 x _ { 3 } = 14 .

(Multiple Choice)
4.8/5
(42)

Provide an appropriate response -Let p0,p1\mathrm { p } _ { 0 } , \mathrm { p } _ { 1 } , and p2\mathrm { p } _ { 2 } be points in Rn\mathfrak { R } ^ { \mathrm { n } } and define f0(t)=(1t)p0+tp1,f1(t)=(1t)p1+tp2\mathrm { f } _ { 0 } ( \mathrm { t } ) = ( 1 - \mathrm { t } ) \mathrm { p } _ { 0 } + \mathrm { tp } _ { 1 } , \mathrm { f } _ { 1 } ( \mathrm { t } ) = ( 1 - \mathrm { t } ) \mathrm { p } _ { 1 } + \mathrm { tp } _ { 2 } , and g(t)=(1t)f0(t)+tf1(t)g ( t ) = ( 1 - t ) f _ { 0 } ( t ) + t f _ { 1 } ( t ) for 0t10 \leq t \leq 1 . Find g12)\left. g \frac { 1 } { 2 } \right) in terms of the three points.

(Multiple Choice)
4.8/5
(35)

Provide an appropriate response -Which of the following statements are true? I: If F1\mathrm { F } _ { 1 } and F2\mathrm { F } _ { 2 } are 5 dimensional flats in R7R ^ { 7 } , then the dimension of F1F2\mathrm { F } _ { 1 } \cap \mathrm { F } _ { 2 } could have a dimension of 6.6 . II: If F1F _ { 1 } and F2F _ { 2 } are strictly separated, then F1F2=F _ { 1 } \cap F _ { 2 } = \varnothing .

(Multiple Choice)
4.7/5
(34)

Find the barycentric coordinates of p with respect to the affinely independent set of points that precedes it. -Which of the following statements are true for the set S={v1,,vk}S = \left\{ \mathbf { v } _ { 1 } , \ldots , \mathbf { v } _ { \mathrm { k } } \right\} in Rn\mathfrak { R } \mathrm { n } ^ { \text {? } } I: If SS is affinely independent, then a point pp in RnR ^ { n } cannot have any barycentric coordinates determined by S\mathrm { S } that are equal to 0 . II: If SS is affinely independent, then a point pp in aff SS has a unique representation as an affine combination of v1,,vk\mathbf { v } _ { 1 } , \ldots , \mathbf { v } _ { \mathrm { k } } .

(Multiple Choice)
4.8/5
(39)

Provide an appropriate response. -If a Bézier curve is translated, x(t)+b\mathbf { x } ( \mathrm { t } ) + \mathbf { b } , will the new curve always be a Bézier curve as well?

(Multiple Choice)
4.9/5
(31)

Provide an appropriate response -Let H\mathrm { H } be the hyperplane through the three points [111],[332],[252]\left[ \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right] , \left[ \begin{array} { l } 3 \\ 3 \\ 2 \end{array} \right] , \left[ \begin{array} { r } 2 \\ 5 \\ - 2 \end{array} \right] . Is the point v=[421]\mathbf { v } = \left[ \begin{array} { l } 4 \\ 2 \\ 1 \end{array} \right] on the same side of H\mathrm { H } as the origin? Justify your answer.

(Multiple Choice)
4.7/5
(38)

Let H be the hyperplane through the points. Find a linear functional f and a real number d such that H = [f : d]. - [1001],[2312],[1121],[3211] \left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}3 \\ 2 \\ -1 \\ 1\end{array}\right]

(Multiple Choice)
4.9/5
(31)

Provide an appropriate response. -A quadratic Bézier curve is determined by 3 control points p0,p1\mathbf { p } _ { 0 } , \mathbf { p } _ { 1 } , and p2\mathbf { p } _ { 2 } . The equation is x(t)=\mathbf { x } ( \mathrm { t } ) = (1t)2p0+2t(1t)p1+t2p2( 1 - t ) ^ { 2 } \mathbf { p } _ { 0 } + 2 t ( 1 - t ) \mathbf { p } _ { 1 } + \mathrm { t } ^ { 2 } \mathbf { p } _ { 2 } . Construct the quadratic Bézier basis matrix MB\mathrm { M } _ { \mathrm { B } } for x(t)\mathbf { x } ( \mathrm { t } ) .

(Multiple Choice)
4.9/5
(39)

Use the barycentric coordinates with respect to S to determine if the point p is inside, outside, on a face, or on the edge of conv S which is a tetrahedron. - S={v1,v2,v3,v4}\mathrm { S } = \left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } , \mathbf { v } _ { 4 } \right\} Barycentric coordinates: (18,12,14,18)\left( \frac { 1 } { 8 } , \frac { 1 } { 2 } , \frac { 1 } { 4 } , \frac { 1 } { 8 } \right)

(Multiple Choice)
4.8/5
(29)

Write y as an affine combination of the other points listed. - v1=[112],v2=[042],v3=[151],y=[52316]\mathbf { v } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \\ 2 \end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { r } 0 \\ 4 \\ - 2 \end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 1 \\ - 5 \\ 1 \end{array} \right] , \mathbf { y } = \left[ \begin{array} { r } 5 \\ - 23 \\ 16 \end{array} \right]

(Multiple Choice)
4.9/5
(28)

Determine if the set of points is affinely dependent. If so, construct an affine dependence relation for the points. - [48],[84],[57]\left[ \begin{array} { l } 4 \\8\end{array} \right] , \left[ \begin{array} { l } 8 \\4\end{array} \right] , \left[ \begin{array} { l } 5 \\7\end{array} \right]

(Multiple Choice)
4.7/5
(41)

Provide an appropriate response -Which of the following statements are true? I: If A and B are convex sets then A + B is convex. II: A four dimensional polytope always has the same number of vertices and edges.

(Multiple Choice)
4.7/5
(39)

Provide an appropriate response. -If 2 Bézier curves are joined at the point p3\mathbf { p } _ { 3 } what is necessary for C1\mathrm { C } ^ { 1 } parametric continuity?

(Multiple Choice)
4.9/5
(37)

Determine if the set of points is affinely dependent. If so, construct an affine dependence relation for the points. - [481],[8164],[0112],[163122]\left[ \begin{array} { r } 4 \\ 8 \\ - 1 \end{array} \right] , \left[ \begin{array} { r } - 8 \\ - 16 \\ 4 \end{array} \right] , \left[ \begin{array} { r } 0 \\ 1 \\ 12 \end{array} \right] , \left[ \begin{array} { r } - 16 \\ - 31 \\ 22 \end{array} \right]

(Multiple Choice)
4.9/5
(37)

Provide an appropriate response -Which of the following statements are true? I: Suppose f:RnRmf : \mathscr { R } ^ { \mathrm { n } } \rightarrow \mathscr { R } ^ { \mathrm { m } } is a linear transformation and S\mathrm { S } is a convex subset of Rn\mathcal { R } ^ { \mathrm { n } } . It follows that the set of images f(S)f ( S ) is a convex subset of RmR ^ { m } . II: If ABA \subset B , then conv ABA \subset B .

(Multiple Choice)
4.9/5
(46)

Provide an appropriate response - p=12v1+18v2+18v3+14v4\mathbf { p } = \frac { 1 } { 2 } \mathbf { v } _ { 1 } + \frac { 1 } { 8 } \mathbf { v } _ { 2 } + \frac { 1 } { 8 } \mathbf { v } _ { 3 } + \frac { 1 } { 4 } \mathbf { v } _ { 4 } and 2v1+v22v3v4=02 \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 } - 2 \mathbf { v } _ { 3 } - \mathbf { v } _ { 4 } = \mathbf { 0 } Use the procedure in the proof of Caratheodory's Theorem to express p\mathbf { p } as a convex combination of three of the vi\mathbf { v } _ { \mathbf { i } } 's.

(Multiple Choice)
4.9/5
(39)

Provide an appropriate response -Which of the following statements are true? I: If SS is a nonempty set, then conv SS\mathrm { S } \subseteq \mathrm { S } . II: If SS and T\mathrm { T } are convex sets, then ST\mathrm { S } \cap \mathrm { T } is also convex.

(Multiple Choice)
4.8/5
(29)
Showing 21 - 40 of 57
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)