Exam 4: Vector Spaces
Exam 1: Linear Equations in Linear Algebra79 Questions
Exam 2: Matrix Algebra82 Questions
Exam 3: Determinants18 Questions
Exam 4: Vector Spaces47 Questions
Exam 5: Eigenvalues and Eigenvectors20 Questions
Exam 6: Orthogonality and Least Squares44 Questions
Exam 7: Symmetric Matrices and Quadratic Forms25 Questions
Exam 8: The Geometry of Vector Spaces57 Questions
Exam 9: Optimization Online Only55 Questions
Select questions type
Find an explicit description of the null space of matrix A by listing vectors that span the null space.
-
(Multiple Choice)
4.8/5
(44)
Find the steady-state probability vector for the stochastic matrix P.
-
(Multiple Choice)
4.8/5
(39)
Find a basis for the column space of the matrix.
-Determine which of the following statements is true.
A: If is a 4 -dimensional vector space, then any set of exactly 4 elements in is automatically a basis for .
B: If there exists a set that spans , then .
: If is a subspace of a finite-dimensional vector space , then .
(Multiple Choice)
4.9/5
(39)
Find the new coordinate vector for the vector x after performing the specified change of basis.
- for all
(Multiple Choice)
4.9/5
(41)
Determine whether {v1, v2, v3} is a basis for
, and
- , and
![Determine whether {v1, v2, v3} is a basis for \mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\} - \mathbf { b } _ { 1 } = \left[ \begin{array} { r } 3 \\ 2 \\ - 3 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 5 \\ - 3 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } - 16 \\ 2 \\ 8 \end{array} \right] , and B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}](https://storage.examlex.com/TB7504/11ecc145_8b53_9e6e_8268_5db570ad8e59_TB7504_11.jpg)
(Multiple Choice)
4.9/5
(36)
Determine if the vector u is in the column space of matrix A and whether it is in the null space of A.
-
(Multiple Choice)
4.9/5
(33)
Showing 41 - 47 of 47
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)