Exam 4: Vector Spaces

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find an explicit description of the null space of matrix A by listing vectors that span the null space. - A=[12220134]A = \left[ \begin{array} { r r r r } 1 & - 2 & - 2 & - 2 \\0 & 1 & 3 & 4\end{array} \right]

(Multiple Choice)
4.8/5
(44)

Find a matrix A such that W = Col A. - A=[1206451335]A = \left[ \begin{array} { r r } 1 & - 2 \\0 & 6 \\- 4 & 5 \\- 1 & - 3 \\3 & - 5\end{array} \right]

(Multiple Choice)
4.8/5
(41)

Find the steady-state probability vector for the stochastic matrix P. - P=[0.10.50.90.5]\mathrm { P } = \left[ \begin{array} { l l } 0.1 & 0.5 \\0.9 & 0.5\end{array} \right]

(Multiple Choice)
4.8/5
(39)

Find a basis for the column space of the matrix. -Determine which of the following statements is true. A: If V\mathrm { V } is a 4 -dimensional vector space, then any set of exactly 4 elements in VV is automatically a basis for VV . B: If there exists a set {v1,,v5}\left\{ \mathbf { v } _ { 1 } , \ldots \ldots , \mathbf { v } _ { 5 } \right\} that spans VV , then dimV=5\operatorname { dim } V = 5 . C\mathrm { C } : If H\mathrm { H } is a subspace of a finite-dimensional vector space V\mathrm { V } , then dimHdimV\operatorname { dim } \mathrm { H } \leq \operatorname { dim } \mathrm { V } .

(Multiple Choice)
4.9/5
(39)

Find the new coordinate vector for the vector x after performing the specified change of basis. - yk+34yk+24yk+1+16yk=0y \mathrm { k } + 3 - 4 \mathrm { y } _ { \mathrm { k } } + 2 - 4 \mathrm { y } \mathrm { k } + 1 + 16 \mathrm { y } _ { \mathrm { k } } = 0 for all k\mathrm { k }

(Multiple Choice)
4.9/5
(41)

Determine whether {v1, v2, v3} is a basis for b1=[11],b2=[11],x=[35]\mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}  Determine whether {v1, v2, v3} is a basis for   \mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and  B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}      - \mathbf { b } _ { 1 } = \left[ \begin{array} { r } 3 \\ 2 \\ - 3 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 5 \\ - 3 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } - 16 \\ 2 \\ 8 \end{array} \right] , and  B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\} - b1=[323],b2=[531],x=[1628]\mathbf { b } _ { 1 } = \left[ \begin{array} { r } 3 \\ 2 \\ - 3 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 5 \\ - 3 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } - 16 \\ 2 \\ 8 \end{array} \right] , and B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}

(Multiple Choice)
4.9/5
(36)

Determine if the vector u is in the column space of matrix A and whether it is in the null space of A. - v1=[133],v2=[388],v3=[227]\mathbf { v } _ { 1 } = \left[ \begin{array} { r } 1 \\- 3 \\3\end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { r } - 3 \\8 \\8\end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 2 \\- 2 \\- 7\end{array} \right]

(Multiple Choice)
4.9/5
(33)
Showing 41 - 47 of 47
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)