Exam 4: Vector Spaces

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the general solution of the difference equation. -Given that the signal yk=3k5y _ { k } = 3 k - 5 is a solution of the given difference equation, find a description of all solutions of the equation. yk+26yk+1+5yk=12y _ { k + 2 } - 6 y _ { k + 1 } + 5 y _ { k } = - 12 for all kk

(Multiple Choice)
4.7/5
(42)

Find the steady-state probability vector for the stochastic matrix P. -Suppose that demographic studies show that each year about 8% of a cityʹs population moves to the suburbs (and 92% stays in the city), while 4% of the suburban population moves to the city (and 96% remains in the suburbs). In the year 2000, 64.1% of the population of the region lived in The city and 35.9% lived in the suburbs. What percentage of the population of the region would Eventually live in the city if the migration probabilities were to remain constant over many years? For simplicity, ignore other influences on the population such as births, deaths, and migration into And out of the region.

(Multiple Choice)
4.9/5
(33)

Find an explicit description of the null space of matrix A by listing vectors that span the null space. - u=[121],A=[238315320]\mathbf { u } = \left[ \begin{array} { r } - 1 \\- 2 \\1\end{array} \right] , \mathrm { A } = \left[ \begin{array} { r r r } - 2 & - 3 & - 8 \\- 3 & - 1 & - 5 \\3 & - 2 & 0\end{array} \right]

(Multiple Choice)
4.9/5
(28)

Find a basis for the column space of the matrix. -Determine which of the following statements is false. A: The dimension of the vector space P7\mathrm { P } _ { 7 } of polynomials is 8 . BB : Any line in R3R ^ { 3 } is a one-dimensional subspace of R3R ^ { 3 } . C:C : If a vector space V\mathrm { V } has a basis B={b1,..,b7}B = \left\{ b _ { 1 } , \ldots . . , b _ { 7 } \right\} , then any set in V\mathrm { V } containing 8 vectors must be linearly dependent.

(Multiple Choice)
4.8/5
(32)

Solve the problem. - A=[1231054001622000000130000000]A = \left[ \begin{array} { r r r r r c r } 1 & - 2 & 3 & 1 & 0 & 5 & - 4 \\0 & 0 & 1 & - 6 & 2 & - 2 & 0 \\0 & 0 & 0 & 0 & 0 & 1 & 3 \\0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(36)

Solve the problem. -Consider two bases B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\} and C={c1,c2}C = \left\{ \mathbf { c } _ { 1 } , \mathbf { c } _ { 2 } \right\} for a vector space VV such that b1=c12c2\mathbf { b } _ { 1 } = \mathbf { c } _ { 1 } - 2 \mathbf { c } _ { 2 } and b2=5c1+4c2\mathbf { b } _ { 2 } = 5 \mathbf { c } _ { 1 } + 4 \mathbf { c } _ { 2 } . Suppose x=b1+3b2\mathbf { x } = \mathbf { b } _ { 1 } + 3 \mathbf { b } _ { 2 } . That is, suppose [x]B=[13][ \mathbf { x } ] _ { B } = \left[ \begin{array} { l } 1 \\ 3 \end{array} \right] . Find [x]C[ \mathbf { x } ] _ { C } .

(Multiple Choice)
4.9/5
(44)

Find a basis for the set of all solutions to the difference equation. -Let B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\} and C={c1,c2}C = \left\{ \mathbf { c } _ { 1 } , \mathbf { c } _ { 2 } \right\} be bases for R2\mathcal { R } ^ { 2 } , where b1=[24],b2=[13],c1=[13],c2=[410]\mathbf { b } _ { 1 } = \left[ \begin{array} { l } 2 \\4\end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { l } 1 \\3\end{array} \right] , \mathbf { c } _ { 1 } = \left[ \begin{array} { l } 1 \\3\end{array} \right] , \mathbf { c } _ { 2 } = \left[ \begin{array} { r } - 4 \\- 10\end{array} \right] Find the change-of-coordinates matrix from BB to CC .

(Multiple Choice)
4.8/5
(32)

Find the steady-state probability vector for the stochastic matrix P. - P=[0.90.30.40.10.60.100.10.5]P = \left[ \begin{array} { c c c } 0.9 & 0.3 & 0.4 \\0.1 & 0.6 & 0.1 \\0 & 0.1 & 0.5\end{array} \right]

(Multiple Choice)
4.9/5
(40)

Determine whether the vector u belongs to the null space of the matrix A. - u=[231],A=[235319]\mathbf { u } = \left[ \begin{array} { l } 2 \\3 \\1\end{array} \right] , A = \left[ \begin{array} { r r r } - 2 & 3 & - 5 \\- 3 & - 1 & 9\end{array} \right]

(Multiple Choice)
4.9/5
(34)

Determine whether {v1, v2, v3} is a basis for R3 -Let H={[a+3 b+4 dc+d3a9 b+4c8 dcd]:a,b,c, d\mathrm { H } = \left\{ \left[ \begin{array} { c } \mathrm { a } + 3 \mathrm {~b} + 4 \mathrm {~d} \\ \mathrm { c } + \mathrm { d } \\ - 3 \mathrm { a } - 9 \mathrm {~b} + 4 \mathrm { c } - 8 \mathrm {~d} \\ - \mathrm { c } - \mathrm { d } \end{array} \right] : a , b , c , \mathrm {~d} \right. in R}\left. \mathscr { R } \right\} Find the dimension of the subspace H\mathrm { H } .

(Multiple Choice)
4.8/5
(36)

Solve the problem. -Let HH be the set of all polynomials of the form p(t)=a+bt2\mathrm { p } ( \mathrm { t } ) = \mathrm { a } + \mathrm { bt } ^ { 2 } where a and b\mathrm { b } are in RR and b>ab > a . Determine whether H\mathrm { H } is a vector space. If it is not a vector space, determine which of the following properties it fails to satisfy. A: Contains zero vector B: Closed under vector addition C: Closed under multiplication by scalars

(Multiple Choice)
4.9/5
(39)

Determine whether {v1, v2, v3} is a basis for R3 - B={[22],[01]},[x]B=[55]B = \left\{ \left[ \begin{array} { r } - 2 \\2\end{array} \right] , \left[ \begin{array} { l } 0 \\1\end{array} \right] \right\} , [ \mathrm { x } ] _ { B } = \left[ \begin{array} { r } - 5 \\5\end{array} \right]

(Multiple Choice)
4.9/5
(30)

Solve the problem. - WW is the set of all vectors of the form [a4b54a+bab]\left[ \begin{array} { c } a - 4 b \\ 5 \\ 4 a + b \\ - a - b \end{array} \right] , where aa and bb are arbitrary real numbers.

(Multiple Choice)
4.8/5
(32)

Find the specified change-of-coordinates matrix. -Consider two bases B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\} and C={c1,c2}C = \left\{ \mathbf { c } _ { 1 } , \mathbf { c } _ { 2 } \right\} for a vector space VV such that b1=c15c2\mathbf { b } _ { 1 } = \mathbf { c } _ { 1 } - 5 \mathbf { c } _ { 2 } and b2=2c14c2\mathbf { b } _ { 2 } = 2 \mathbf { c } _ { 1 } - 4 c _ { 2 } . Find the change-of-coordinates matrix from BB to CC .

(Multiple Choice)
4.8/5
(42)

Determine if the vector u is in the column space of matrix A and whether it is in the null space of A. -Let v1=[412],v2=[312],v3=[152]\mathbf { v } _ { \mathbf { 1 } } = \left[ \begin{array} { l } - 4 \\ - 1 \\ - 2 \end{array} \right] , \mathbf { v } _ { \mathbf { 2 } } = \left[ \begin{array} { r } - 3 \\ 1 \\ - 2 \end{array} \right] , \mathbf { v } _ { \mathbf { 3 } } = \left[ \begin{array} { r } 1 \\ - 5 \\ 2 \end{array} \right] , and H=Span{v1,v2,v3}\mathrm { H } = \operatorname { Span } \left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } \right\} . Note that v3=2v13v2\mathbf { v } _ { 3 } = 2 \mathbf { v } _ { 1 } - 3 \mathbf { v } _ { 2 } . Which of the following sets form a basis for the subspace HH , i.e., which sets form an efficient spanning set containing no unnecessary vectors? A:{v1,v2,v3}A : \left\{ v _ { 1 } , v _ { 2 } , v _ { 3 } \right\} B:{v1,v2}B : \left\{ v _ { 1 } , v _ { 2 } \right\} C:{v1,v3}C : \left\{ v _ { 1 } , v _ { 3 } \right\} D: {v2,v3}\left\{ v _ { 2 } , v _ { 3 } \right\}

(Multiple Choice)
4.9/5
(45)

Solve the problem. -Determine which of the following sets is a vector space. VV is the line y=xy = x in the xyx y -plane: V={[xy]:y=x}V = \left\{ \left[ \begin{array} { l } x \\ y \end{array} \right] : y = x \right\} WW is the union of the first and second quadrants in the xy-plane: W={[xy]:y0}W = \left\{ \left[ \begin{array} { l } x \\ y \end{array} \right] : y \geq 0 \right\} UU is the line y=x+1y = x + 1 in the xyx y -plane: U={[xy]:y=x+1}U = \left\{ \left[ \begin{array} { l } x \\ y \end{array} \right] : y = x + 1 \right\}

(Multiple Choice)
4.9/5
(40)

Determine whether the signals are linearly independent. - 2k5,4k1,k+32 \mathrm { k } - 5,4 \mathrm { k } - 1 , \mathrm { k } + 3

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Determine which of the following sets is a subspace of PnP _ { n } for an appropriate value of nn . A: All polynomials of the form p(t)=a+bt2p ( t ) = a + b t ^ { 2 } , where aa and bb are in RR B: All polynomials of degree exactly 4 , with real coefficients C: All polynomials of degree at most 4 , with positive coefficients

(Multiple Choice)
4.9/5
(44)

Solve the problem. -A mathematician has found 5 solutions to a homogeneous system of 40 equations in 42 variables. The 5 solutions are linearly independent and all other solutions can be constructed by adding together appropriate multiples of these 5 solutions. Will the system necessarily have a solution for every possible choice of constants on the right side of the equation? Explain.

(Essay)
4.8/5
(38)

Solve the problem. - A=[13401245241503231834],B=[1340102326008112500000]A = \left[ \begin{array} { r r r r r } 1 & 3 & - 4 & 0 & 1 \\2 & 4 & - 5 & 2 & - 4 \\1 & - 5 & 0 & - 3 & 2 \\- 3 & - 1 & 8 & 3 & - 4\end{array} \right] , B = \left[ \begin{array} { r r r r r } 1 & 3 & - 4 & 0 & 1 \\0 & - 2 & 3 & 2 & - 6 \\0 & 0 & - 8 & - 11 & 25 \\0 & 0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(36)
Showing 21 - 40 of 47
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)