Exam 2: Matrix Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find a basis for the column space of the matrix. - B=[12532413236159]B = \left[ \begin{array} { r r r r } 1 & - 2 & 5 & - 3 \\2 & - 4 & 13 & - 2 \\- 3 & 6 & - 15 & 9\end{array} \right]

(Multiple Choice)
4.8/5
(32)

Find the inverse of the matrix, if it exists - A=[5046]A = \left[ \begin{array} { r r } 5 & 0 \\- 4 & - 6\end{array} \right]

(Multiple Choice)
4.8/5
(33)

Find the inverse of the matrix A, if it exists. - A=[5155031018]A = \left[ \begin{array} { r r r } 5 & - 1 & 5 \\5 & 0 & 3 \\10 & - 1 & 8\end{array} \right]

(Multiple Choice)
4.9/5
(41)

Decide whether or not the matrices are inverses of each other. - [9272] and [0.50.57494]\left[ \begin{array} { l l } 9 & - 2 \\7 & - 2\end{array} \right] \text { and } \left[ \begin{array} { c c } 0.5 & 0.5 \\- \frac { 7 } { 4 } & - \frac { 9 } { 4 }\end{array} \right]

(Multiple Choice)
4.7/5
(30)

Find the inverse of the matrix, if it exists - [100110111]\left[ \begin{array} { r r r } 1 & 0 & 0 \\- 1 & 1 & 0 \\1 & 1 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(44)

Perform the matrix operation. -Let A=[2372]A = \left[ \begin{array} { c c } - 2 & 3 \\ - 7 & - 2 \end{array} \right] and B=[21076]B = \left[ \begin{array} { c c } 2 & 10 \\ - 7 & 6 \end{array} \right] . Find ABA - B .

(Multiple Choice)
4.9/5
(34)

Determine whether b is in the column space of A. - A=[123146325],b=[123]A = \left[ \begin{array} { r r r } 1 & 2 & - 3 \\1 & 4 & - 6 \\- 3 & - 2 & 5\end{array} \right] , \mathbf { b } = \left[ \begin{array} { r } 1 \\- 2 \\- 3\end{array} \right]

(Multiple Choice)
4.8/5
(41)

Find the inverse of the matrix, if it exists - A=[3434]A = \left[ \begin{array} { r r } - 3 & - 4 \\3 & - 4\end{array} \right]

(Multiple Choice)
4.8/5
(34)

Find the matrix product AB, if it is defined. - A=[1322],B=[2012]A = \left[ \begin{array} { r r } - 1 & 3 \\2 & 2\end{array} \right] , B = \left[ \begin{array} { l l } - 2 & 0 \\- 1 & 2\end{array} \right]

(Multiple Choice)
4.9/5
(37)

Solve the system by using the inverse of the coefficient matrix. - 6+5=13 5+3=5

(Multiple Choice)
4.8/5
(35)

Perform the matrix operation. -Let A=[12]\mathrm { A } = \left[ \begin{array} { l l } - 1 & 2 \end{array} \right] and B=[10]\mathrm { B } = \left[ \begin{array} { l l } 1 & 0 \end{array} \right] . Find 3 A+4 B3 \mathrm {~A} + 4 \mathrm {~B} .

(Multiple Choice)
4.9/5
(37)

Find an LU factorization of the matrix A. - A=[2354954324]A = \left[ \begin{array} { r r r } 2 & 3 & 5 \\4 & 9 & 5 \\4 & - 3 & 24\end{array} \right]

(Multiple Choice)
4.8/5
(33)

Perform the matrix operation. -Let A=[3235]A = \left[ \begin{array} { c c } - 3 & 2 \\ 3 & - 5 \end{array} \right] and B=[0000]B = \left[ \begin{array} { l l } 0 & 0 \\ 0 & 0 \end{array} \right] . Find A+BA + B .

(Multiple Choice)
4.8/5
(44)

Find the matrix product AB, if it is defined. - A=[131305],B=[301105]A = \left[ \begin{array} { r r r } 1 & 3 & - 1 \\3 & 0 & 5\end{array} \right] , B = \left[ \begin{array} { r r } 3 & 0 \\- 1 & 1 \\0 & 5\end{array} \right]

(Multiple Choice)
4.7/5
(38)

Find the inverse of the matrix A, if it exists. - A=[108123253]A = \left[ \begin{array} { l l l } 1 & 0 & 8 \\1 & 2 & 3 \\2 & 5 & 3\end{array} \right]

(Multiple Choice)
4.9/5
(31)

Find the inverse of the matrix A, if it exists. - A=[033104070]A = \left[ \begin{array} { r r r } 0 & 3 & 3 \\- 1 & 0 & 4 \\0 & 7 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(27)

Determine the production vector x that will satisfy demand in an economy with the given consumption matrix C and final demand vector d. Round production levels to the nearest whole number. -Compute the matrix of the transformation that performs the shear transformation xAxx \rightarrow A x for A=[10.2001]A = \left[ \begin{array} { l l } 1 & 0.20 \\ 0 & 1 \end{array} \right] and then scales all xx -coordinates by a factor of 0.610.61 .

(Multiple Choice)
4.8/5
(38)

Find the matrix product AB, if it is defined. - A=[321041],B=[4022]A = \left[ \begin{array} { r r r } 3 & - 2 & 1 \\0 & 4 & - 1\end{array} \right] , B = \left[ \begin{array} { r r } 4 & 0 \\- 2 & 2\end{array} \right] \text {. }

(Multiple Choice)
4.8/5
(39)

Determine whether the matrix is invertible. - [29114]\left[ \begin{array} { r r } 2 & 9 \\1 & 14\end{array} \right]

(Multiple Choice)
4.8/5
(42)

The vector x is in a subspace H with a basis β = {b1, b2}. Find the β-coordinate vector of x. - b1=[12],b2=[53],x=[2216]\mathbf { b } _ { 1 } = \left[ \begin{array} { r } 1 \\- 2\end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } - 5 \\3\end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 22 \\- 16\end{array} \right]

(Multiple Choice)
4.8/5
(31)
Showing 41 - 60 of 82
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)