Exam 2: Matrix Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the inverse of the matrix A, if it exists. - A=[8421174332]A = \left[ \begin{array} { r r r } 8 & - 4 & 2 \\11 & - 7 & 4 \\3 & - 3 & 2\end{array} \right]

(Multiple Choice)
4.9/5
(33)

Decide whether or not the matrices are inverses of each other. - [210112101]\left[ \begin{array} { r r r } 2 & - 1 & 0 \\ - 1 & 1 & - 2 \\ 1 & 0 & - 1 \end{array} \right] and [112324111]\left[ \begin{array} { r r r } 1 & - 1 & 2 \\ - 3 & - 2 & 4 \\ - 1 & 1 & 1 \end{array} \right]

(Multiple Choice)
4.9/5
(36)

Solve the system by using the inverse of the coefficient matrix. - -5+3=8 -2+4=20

(Multiple Choice)
4.8/5
(36)

Find the matrix product AB, if it is defined. - A=[1316],B=[026132]A = \left[ \begin{array} { r r } - 1 & 3 \\1 & 6\end{array} \right] , B = \left[ \begin{array} { l l l } 0 & - 2 & 6 \\1 & - 3 & 2\end{array} \right]

(Multiple Choice)
4.8/5
(31)

Find the matrix product AB, if it is defined. - A=[0243],B=[132031]A = \left[ \begin{array} { r r } 0 & - 2 \\4 & 3\end{array} \right] , B = \left[ \begin{array} { r r r } - 1 & 3 & 2 \\0 & - 3 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(42)

Identify the indicated submatrix. - A=[261201036363].A = \left[ \begin{array} { r r | r } 2 & 6 & 1 \\ - 2 & 0 & - 1 \\ 0 & 3 & - 6 \\ \hline 3 & 6 & 3 \end{array} \right] .

(Multiple Choice)
4.8/5
(36)

Perform the matrix operation. -Let A=[242535]A = \left[ \begin{array} { r r } 2 & - 4 \\ - 2 & - 5 \\ 3 & 5 \end{array} \right] and B=[986674]B = \left[ \begin{array} { r r } 9 & - 8 \\ - 6 & - 6 \\ - 7 & - 4 \end{array} \right] . Find A+BA + B .

(Multiple Choice)
4.8/5
(36)

Find a basis for the null space of the matrix. - A=[10404012020001100000]A = \left[ \begin{array} { r r r r r } 1 & 0 & - 4 & 0 & - 4 \\0 & 1 & 2 & 0 & 2 \\0 & 0 & 0 & 1 & 1 \\0 & 0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(36)

The sizes of two matrices A and B are given. Find the sizes of the product AB and the product BA, if the products are defined. - AA is 2×42 \times 4 , B is 2×42 \times 4 .

(Multiple Choice)
4.9/5
(36)

Find a basis for the null space of the matrix. - A=[107401520000]A = \left[ \begin{array} { r r r r } 1 & 0 & - 7 & - 4 \\0 & 1 & 5 & - 2 \\0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.9/5
(41)

The sizes of two matrices A and B are given. Find the sizes of the product AB and the product BA, if the products are defined. -A is 4×44 \times 4 , B is 4×44 \times 4 .

(Multiple Choice)
4.9/5
(43)

Determine the rank of the matrix. - [10404013040001100000]\left[ \begin{array} { r r r r r } 1 & 0 & - 4 & 0 & 4 \\0 & 1 & - 3 & 0 & 4 \\0 & 0 & 0 & 1 & 1 \\0 & 0 & 0 & 0 & 0\end{array} \right]

(Multiple Choice)
4.8/5
(40)

Solve the system by using the inverse of the coefficient matrix. - -3-2=2 6+4=8

(Multiple Choice)
4.9/5
(39)

Find the transpose of the matrix. - [844077]\left[ \begin{array} { r r } 8 & 4 \\ - 4 & 0 \\ - 7 & 7 \end{array} \right]

(Multiple Choice)
4.8/5
(34)

Find the matrix product AB for the partitioned matrices. - A=[401213537],B=[208516224103]A = \left[ \begin{array} { r r | r } 4 & 0 & 1 \\2 & - 1 & - 3 \\5 & 3 & 7\end{array} \right] , B = \left[ \begin{array} { r r r | r } - 2 & 0 & 8 & 5 \\1 & 6 & 2 & 2 \\\hline 4 & - 1 & 0 & 3\end{array} \right]

(Multiple Choice)
4.9/5
(42)

Perform the matrix operation. -Let C=[132]C = \left[ \begin{array} { r } 1 \\ - 3 \\ 2 \end{array} \right] and D=[132]D = \left[ \begin{array} { r } - 1 \\ 3 \\ - 2 \end{array} \right] . Find C2DC - 2 D

(Multiple Choice)
4.9/5
(35)

Find the matrix product AB for the partitioned matrices. - A=[0IIF],B=[WXYZ]A = \left[ \begin{array} { l l } 0 & I \\I & F\end{array} \right] , B = \left[ \begin{array} { l l } W & X \\Y & Z\end{array} \right]

(Multiple Choice)
4.8/5
(35)

Find the 3 × 3 matrix that produces the described composite 2D transformation, using homogeneous coordinates. -Rotate points through 45° and then scale the x-coordinate by 0.6 and the y-coordinate by 0.8.

(Multiple Choice)
4.9/5
(39)

Determine the production vector x that will satisfy demand in an economy with the given consumption matrix C and final demand vector d. Round production levels to the nearest whole number. - C=[.2.1.1.3.2.3.4.1.3],d=[213323298]\mathrm { C } = \left[ \begin{array} { l l l } .2 & .1 & .1 \\.3 & .2 & .3 \\.4 & .1 & .3\end{array} \right] , \mathrm { d } = \left[ \begin{array} { l } 213 \\323 \\298\end{array} \right]

(Multiple Choice)
4.7/5
(35)

Find the inverse of the matrix, if it exists - A=[5522]A = \left[ \begin{array} { r r } - 5 & - 5 \\ 2 & 2 \end{array} \right]

(Multiple Choice)
4.8/5
(37)
Showing 61 - 80 of 82
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)