Exam 2: Matrix Algebra

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Decide whether or not the matrices are inverses of each other. - [10110]\left[ \begin{array} { r r } 10 & 1 \\ - 1 & 0 \end{array} \right] and [01110]\left[ \begin{array} { r r } 0 & 1 \\ - 1 & 10 \end{array} \right]

(Multiple Choice)
4.9/5
(34)

Find the 4 × 4 matrix that produces the described transformation, using homogeneous coordinates. -Translation by the vector (4, -6, -3)72)

(Multiple Choice)
4.9/5
(43)

Decide whether or not the matrices are inverses of each other. - [2444]\left[ \begin{array} { r r } - 2 & 4 \\ 4 & - 4 \end{array} \right] and [12141214]\left[ \begin{array} { c c } \frac { 1 } { 2 } & \frac { 1 } { 4 } \\ \frac { 1 } { 2 } & \frac { 1 } { 4 } \end{array} \right]

(Multiple Choice)
4.8/5
(42)

Decide whether or not the matrices are inverses of each other. - [5332]\left[ \begin{array} { l l } 5 & 3 \\ 3 & 2 \end{array} \right] and [2335]\left[ \begin{array} { r r } 2 & - 3 \\ - 3 & 5 \end{array} \right]

(Multiple Choice)
4.8/5
(40)

Find the 3 × 3 matrix that produces the described transformation, using homogeneous coordinates. - (x,y)(x+7,y+4)( x , y ) \rightarrow ( x + 7 , y + 4 )

(Multiple Choice)
4.8/5
(45)

Solve the equation Ax = b by using the LU factorization given for A. - A=[12431314211931597],b=[2043]A = \left[ \begin{array} { r r r r } 1 & 2 & 4 & 3 \\- 1 & - 3 & - 1 & - 4 \\2 & 1 & 19 & 3 \\1 & 5 & - 9 & 7\end{array} \right] , \mathbf { b } = \left[ \begin{array} { l } 2 \\0 \\4 \\3\end{array} \right] A=[1000110023101321][1243013100200001]A = \left[ \begin{array} { r r r r } 1 & 0 & 0 & 0 \\- 1 & 1 & 0 & 0 \\2 & 3 & 1 & 0 \\1 & - 3 & - 2 & 1\end{array} \right] \left[ \begin{array} { r r r r } 1 & 2 & 4 & 3 \\0 & - 1 & 3 & - 1 \\0 & 0 & 2 & 0 \\0 & 0 & 0 & 1\end{array} \right]

(Multiple Choice)
4.8/5
(29)

Determine whether the matrix is invertible. - [959424303]\left[ \begin{array} { r r r } 9 & 5 & - 9 \\4 & 2 & - 4 \\- 3 & 0 & 3\end{array} \right]

(Multiple Choice)
4.8/5
(32)

Determine the production vector x that will satisfy demand in an economy with the given consumption matrix C and final demand vector d. Round production levels to the nearest whole number. -Compute the matrix of the transformation that performs the shear transformation xAxx \rightarrow A x for A=[10.2501]A = \left[ \begin{array} { l l } 1 & 0.25 \\ 0 & 1 \end{array} \right] and then scales all yy -coordinates by a factor of 0.680.68 .

(Multiple Choice)
4.8/5
(44)

Find the inverse of the matrix A, if it exists. - A=[111211223]A = \left[ \begin{array} { l l l } 1 & 1 & 1 \\2 & 1 & 1 \\2 & 2 & 3\end{array} \right]

(Multiple Choice)
4.7/5
(34)

Perform the matrix operation. -Let A=[3102]A = \left[ \begin{array} { r r } - 3 & 1 \\ 0 & 2 \end{array} \right] . Find 5 A5 \mathrm {~A} .

(Multiple Choice)
4.8/5
(33)

Perform the matrix operation. -Let C=[6210]C = \left[ \begin{array} { r } 6 \\ - 2 \\ 10 \end{array} \right] . Find (1/2) C.

(Multiple Choice)
4.7/5
(46)

Find the inverse of the matrix A, if it exists. - A=[132133278]A = \left[ \begin{array} { l l l } 1 & 3 & 2 \\1 & 3 & 3 \\2 & 7 & 8\end{array} \right]

(Multiple Choice)
4.8/5
(34)

Identify the indicated submatrix. - A=[014541072570]A = \left[ \begin{array} { r r r | r } 0 & 1 & - 4 & - 5 \\ 4 & - 1 & 0 & 7 \\ \hline 2 & 5 & - 7 & 0 \end{array} \right] . Find A12A _ { 12 }

(Multiple Choice)
4.8/5
(32)

Perform the matrix operation. -Let A=[3324]A = \left[ \begin{array} { l l } 3 & 3 \\ 2 & 4 \end{array} \right] and B=[0416]B = \left[ \begin{array} { r r } 0 & 4 \\ - 1 & 6 \end{array} \right] . Find 4A+B4 A + B .

(Multiple Choice)
4.7/5
(36)

Find the 3 × 3 matrix that produces the described transformation, using homogeneous coordinates. -Reflect through the x-axis

(Multiple Choice)
4.8/5
(36)

Determine the production vector x that will satisfy demand in an economy with the given consumption matrix C and final demand vector d. Round production levels to the nearest whole number. - C=[.4.3.1.6],d=[5274]\mathrm { C } = \left[ \begin{array} { l l } .4 & .3 \\.1 & .6\end{array} \right] , \mathrm { d } = \left[ \begin{array} { l } 52 \\74\end{array} \right]

(Multiple Choice)
5.0/5
(32)

Decide whether or not the matrices are inverses of each other. - [5171]\left[ \begin{array} { c c } - 5 & 1 \\ - 7 & 1 \end{array} \right] and [12127252]\left[ \begin{array} { l } \frac { 1 } { 2 } - \frac { 1 } { 2 } \\ \frac { 7 } { 2 } - \frac { 5 } { 2 } \end{array} \right]

(Multiple Choice)
4.8/5
(34)

Find the matrix product AB, if it is defined. - A=[1002],B=[122222]A = \left[ \begin{array} { l l } 1 & 0 \\0 & 2\end{array} \right] , B = \left[ \begin{array} { r r r } 1 & 2 & - 2 \\2 & - 2 & 2\end{array} \right]

(Multiple Choice)
4.9/5
(45)

The sizes of two matrices A and B are given. Find the sizes of the product AB and the product BA, if the products are defined. - AA is 1×4,B1 \times 4 , B is 4×14 \times 1 .

(Multiple Choice)
4.9/5
(39)

Find the inverse of the matrix, if it exists - A=[0563]A = \left[ \begin{array} { r r } 0 & - 5 \\ 6 & 3 \end{array} \right]

(Multiple Choice)
4.9/5
(32)
Showing 21 - 40 of 82
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)