Exam 9: Analytic Geometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Graph the hyperbola. - 36x24y2=14436 x^{2}-4 y^{2}=144  Graph the hyperbola. - 36 x^{2}-4 y^{2}=144

(Multiple Choice)
4.8/5
(31)

Find an equation for the ellipse described. -Center at (0,0)( 0,0 ) ; focus at (3,0)( - 3,0 ) ; vertex at (4,0)( 4,0 )

(Multiple Choice)
4.9/5
(36)

Find an equation for the ellipse described. Graph the equation. -Foci at (-1, 4) and (-5, 4); vertex at (-7, 4) Find an equation for the ellipse described. Graph the equation. -Foci at (-1, 4) and (-5, 4); vertex at (-7, 4)

(Multiple Choice)
4.8/5
(26)

Graph the hyperbola. - y24x216=1\frac{y^{2}}{4}-\frac{x^{2}}{16}=1  Graph the hyperbola. - \frac{y^{2}}{4}-\frac{x^{2}}{16}=1

(Multiple Choice)
4.8/5
(40)

Rotate the axes so that the new equation contains no xy-term. Discuss the new equati - xy+16=0\mathrm { xy } + 16 = 0

(Multiple Choice)
5.0/5
(35)

Find the asymptotes of the hyperbola. - x225y29=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 9 } = 1

(Multiple Choice)
4.8/5
(34)

Graph the equation. - (x+1)2=8(y2)(x+1)^{2}=-8(y-2)  Graph the equation. - (x+1)^{2}=-8(y-2)

(Multiple Choice)
4.7/5
(39)

Graph the hyperbola. - (y+2)29(x2)216=1\frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 16 } = 1  Graph the hyperbola. - \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 16 } = 1

(Multiple Choice)
4.8/5
(32)

Find a rectangular equation for the plane curve defined by the parametric equations. - x=7sint,y=7cost;0t2πx = 7 \sin t , y = 7 \cos t ; 0 \leq t \leq 2 \pi

(Multiple Choice)
4.9/5
(33)

Name the conic. -Name the conic. -

(Multiple Choice)
4.8/5
(30)

Find the center, foci, and vertices of the ellipse. - 9x2+4y2=369 x ^ { 2 } + 4 y ^ { 2 } = 36

(Multiple Choice)
4.8/5
(37)

Find an equation for the ellipse described. -Center at (0,0)( 0,0 ) ; focus at (5,0)( 5,0 ) ; vertex at (7,0)( 7,0 )

(Multiple Choice)
4.9/5
(29)

Find an equation for the ellipse described. Graph the equation. -Foci at (3,1)( 3 , - 1 ) and (3,7)( 3 , - 7 ) ; length of major axis is 10  Find an equation for the ellipse described. Graph the equation. -Foci at  ( 3 , - 1 )  and  ( 3 , - 7 ) ; length of major axis is 10

(Multiple Choice)
4.9/5
(34)

Find the vertex, focus, and directrix of the parabola. Graph the equation. - x28x=12y76x^{2}-8 x=12 y-76  Find the vertex, focus, and directrix of the parabola. Graph the equation. - x^{2}-8 x=12 y-76     A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2        A) vertex: (4,5) (4,5) focus: (4,2) (4,2) directrix: y=8 y=8  Find the vertex, focus, and directrix of the parabola. Graph the equation. - x^{2}-8 x=12 y-76     A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2        B) vertex: (4,5) (4,5) focus: (7,5) (7,5) directrix: x=1 x=1  Find the vertex, focus, and directrix of the parabola. Graph the equation. - x^{2}-8 x=12 y-76     A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2        C) vertex: (4,5) (4,5) focus: (1,5) (1,5) directrix: x=7 x=7  Find the vertex, focus, and directrix of the parabola. Graph the equation. - x^{2}-8 x=12 y-76     A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2        D) vertex: (4,5) (4,5) focus: (4,8) (4,8) directrix: y=2 y=2  Find the vertex, focus, and directrix of the parabola. Graph the equation. - x^{2}-8 x=12 y-76     A) vertex:   (4,5)   focus:   (4,2)   directrix:   y=8      B) vertex:   (4,5)   focus:   (7,5)   directrix:   x=1      C) vertex:   (4,5)   focus:   (1,5)   directrix:   x=7      D) vertex:   (4,5)   focus:   (4,8)   directrix:   y=2

(Multiple Choice)
4.9/5
(40)

Find the center, foci, and vertices of the ellipse. - 16(x+2)2+9(y1)2=14416 ( \mathrm { x } + 2 ) ^ { 2 } + 9 ( \mathrm { y } - 1 ) ^ { 2 } = 144

(Multiple Choice)
4.9/5
(40)

Match the equation to its graph. - y2=13xy ^ { 2 } = 13 x

(Multiple Choice)
4.9/5
(41)

Find an equation of the parabola described. -Vertex at (0, 0); axis of symmetry the x-axis; containing the point (9, 5) A) y2=2536xy ^ { 2 } = \frac { 25 } { 36 } x B) y2=259xy ^ { 2 } = \frac { 25 } { 9 } x C) x2=2536yx ^ { 2 } = \frac { 25 } { 36 } y D) x2=259yx ^ { 2 } = \frac { 25 } { 9 } y

(Multiple Choice)
4.8/5
(33)

Graph the equation. - (x+1)29+(y2)216=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1  Graph the equation. - \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1

(Multiple Choice)
4.9/5
(38)

Find an equation for the ellipse described. Graph the equation. -Vertices at (5, -4) and (5, 8); length of minor axis is 6 Find an equation for the ellipse described. Graph the equation. -Vertices at (5, -4) and (5, 8); length of minor axis is 6

(Multiple Choice)
4.8/5
(35)

Graph the curve whose parametric equations are given. - x=2sint,y=2cost;0t2πx=2 \sin t, y=2 \cos t ; 0 \leq t \leq 2 \pi  Graph the curve whose parametric equations are given. - x=2 \sin t, y=2 \cos t ; 0 \leq t \leq 2 \pi

(Multiple Choice)
4.9/5
(34)
Showing 141 - 160 of 197
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)