Exam 9: Analytic Geometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the asymptotes of the hyperbola. - x2y26x+8y11=0x ^ { 2 } - y ^ { 2 } - 6 x + 8 y - 11 = 0

(Multiple Choice)
5.0/5
(34)

Identify the equation without applying a rotation of axes. - 10x2+9xy+4y2+2x3y+5=010 x ^ { 2 } + 9 x y + 4 y ^ { 2 } + 2 x - 3 y + 5 = 0

(Multiple Choice)
4.8/5
(34)

Convert the polar equation to a rectangular equation. - r=4secθsecθ+2r = \frac { 4 \sec \theta } { \sec \theta + 2 }

(Multiple Choice)
4.8/5
(36)

Find parametric equations for the rectangular equation. -Find parametric equations for the rectangular equation. -

(Multiple Choice)
5.0/5
(34)

Graph the equation. - 9(x+2)2+4(y1)2=369(x+2)^{2}+4(y-1)^{2}=36  Graph the equation. - 9(x+2)^{2}+4(y-1)^{2}=36

(Multiple Choice)
4.8/5
(39)

Find an equation of the parabola described. -Focus at (0, 21); directrix the line y = -21 A) x2=84yx ^ { 2 } = 84 y B) y2=84xy ^ { 2 } = 84 x C) y2=21xy ^ { 2 } = 21 x D) x2=84yx ^ { 2 } = - 84 y

(Multiple Choice)
4.8/5
(41)

Find an equation for the ellipse described. -Foci at (±2,0);x( \pm 2,0 ) ; \quad x -intercepts are ±7\pm 7

(Multiple Choice)
4.8/5
(36)

Find the vertex, focus, and directrix of the parabola. - x2=8yx^{2}=-8 y  Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y     A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2      C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2       A) vertex: (0,0)( 0,0 ) focus: (0,2)( 0,2 ) directrix: y=2y = - 2  Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y     A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2      C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2       B) vertex: (0,0)( 0,0 ) focus: (2,0)( - 2,0 ) directrix: x=2x = 2  Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y     A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2      C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2       C) vertex: (0,0)( 0,0 ) focus: (0,2)( 0 , - 2 ) directrix: y=2y = 2  Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y     A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2      C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2       D) vertex: (0,0)( 0,0 ) focus: (2,0)( 2,0 ) directrix: x=2x = - 2  Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y     A) vertex:  ( 0,0 )  focus:  ( 0,2 )  directrix:  y = - 2     B) vertex:  ( 0,0 )  focus:  ( - 2,0 )  directrix:  x = 2      C) vertex:  ( 0,0 )  focus:  ( 0 , - 2 )  directrix:  y = 2      D) vertex:  ( 0,0 )  focus:  ( 2,0 )  directrix:  x = - 2

(Multiple Choice)
4.8/5
(45)

Match the equation to the graph. - (y+2)2=7(x1)( y + 2 ) ^ { 2 } = - 7 ( x - 1 )

(Multiple Choice)
5.0/5
(36)

Find an equation for the ellipse described. -Foci at (0,±5);y( 0 , \pm 5 ) ; \quad \mathrm { y } -intercepts are ±8\pm 8

(Multiple Choice)
4.7/5
(36)

Find an equation for the hyperbola described. -Vertices at (0,±10)( 0 , \pm 10 ) ; asymptotes at y=±53xy = \pm \frac { 5 } { 3 } x

(Multiple Choice)
4.8/5
(32)

Find the center, foci, and vertices of the ellipse. - x216+y264=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 64 } = 1

(Multiple Choice)
4.8/5
(35)

Find an equation for the hyperbola described. -Vertices (12,3)\left( \frac { 1 } { 2 } , - 3 \right) and (92,3);\left( - \frac { 9 } { 2 } , - 3 \right) ; asymptotes y+3=±65(x+2)\mathrm { y } + 3 = \pm \frac { 6 } { 5 } ( \mathrm { x } + 2 )

(Multiple Choice)
4.7/5
(32)

Graph the equation. - (x1)29+(y+1)24=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1  Graph the equation. - \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1

(Multiple Choice)
4.8/5
(29)

Find an equation for the hyperbola described. Graph the equation. -Center at (0,0);( 0,0 ) ; vertex at (0,3);( 0,3 ) ; focus at (0,13)( 0 , \sqrt { 13 } )  Find an equation for the hyperbola described. Graph the equation. -Center at  ( 0,0 ) ;  vertex at  ( 0,3 ) ;  focus at  ( 0 , \sqrt { 13 } )

(Multiple Choice)
4.8/5
(30)

Find an equation for the ellipse described. -Center at (6,4)( 6,4 ) ; focus at (10,4)( 10,4 ) ; vertex at (12,4)( 12,4 )

(Multiple Choice)
4.9/5
(40)

Identify the equation without applying a rotation of axes. - x23xy3y22x3y5=0x ^ { 2 } - 3 x y - 3 y ^ { 2 } - 2 x - 3 y - 5 = 0

(Multiple Choice)
4.8/5
(45)

Graph the hyperbola. -A satellite following the hyperbolic path shown in the picture turns rapidly at (0,4)( 0,4 ) and then moves closer and closer to the line y=85×y = \frac { 8 } { 5 } \times as it gets farther from the tracking station at the origin. Find the equation that describes the path of the rocket if the center of the hyperbola is at (0,0)( 0,0 ) .  Graph the hyperbola. -A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,4 )  and then moves closer and closer to the line  y = \frac { 8 } { 5 } \times  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the rocket if the center of the hyperbola is at  ( 0,0 ) .

(Multiple Choice)
4.8/5
(31)

Write an equation for the hyperbola. -Write an equation for the hyperbola. -

(Multiple Choice)
4.8/5
(36)

Solve the problem. -Find parametric equations for an object that moves along the ellipse x29+y281=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 81 } = 1 with the motion described. The motion begins at (3,0)( 3,0 ) , is counterclockwise, and requires 5 seconds for a complete revolution.

(Multiple Choice)
4.8/5
(30)
Showing 81 - 100 of 197
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)