Exam 9: Analytic Geometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Graph the equation. - y2=16xy^{2}=16 x  Graph the equation. - y^{2}=16 x     A)    B)    C)    D)    A)  Graph the equation. - y^{2}=16 x     A)    B)    C)    D)    B)  Graph the equation. - y^{2}=16 x     A)    B)    C)    D)    C)  Graph the equation. - y^{2}=16 x     A)    B)    C)    D)    D)  Graph the equation. - y^{2}=16 x     A)    B)    C)    D)

(Multiple Choice)
4.8/5
(37)

Graph the curve whose parametric equations are given. - x=t+2,y=3t1;0t3\mathrm{x}=\mathrm{t}+2, \mathrm{y}=3 \mathrm{t}-1 ; 0 \leq \mathrm{t} \leq 3  Graph the curve whose parametric equations are given. - \mathrm{x}=\mathrm{t}+2, \mathrm{y}=3 \mathrm{t}-1 ; 0 \leq \mathrm{t} \leq 3     A)    B)    C)    D)    A)  Graph the curve whose parametric equations are given. - \mathrm{x}=\mathrm{t}+2, \mathrm{y}=3 \mathrm{t}-1 ; 0 \leq \mathrm{t} \leq 3     A)    B)    C)    D)    B)  Graph the curve whose parametric equations are given. - \mathrm{x}=\mathrm{t}+2, \mathrm{y}=3 \mathrm{t}-1 ; 0 \leq \mathrm{t} \leq 3     A)    B)    C)    D)    C)  Graph the curve whose parametric equations are given. - \mathrm{x}=\mathrm{t}+2, \mathrm{y}=3 \mathrm{t}-1 ; 0 \leq \mathrm{t} \leq 3     A)    B)    C)    D)    D)  Graph the curve whose parametric equations are given. - \mathrm{x}=\mathrm{t}+2, \mathrm{y}=3 \mathrm{t}-1 ; 0 \leq \mathrm{t} \leq 3     A)    B)    C)    D)

(Multiple Choice)
5.0/5
(29)

Find a rectangular equation for the plane curve defined by the parametric equations. - x=3t,y=t+1;2t3\mathrm { x } = 3 \mathrm { t } , \mathrm { y } = \mathrm { t } + 1 ; - 2 \leq \mathrm { t } \leq 3

(Multiple Choice)
4.8/5
(39)

Identify the conic that the polar equation represents. Also, give the position of the directrix. - r=93+3sinθr = \frac { 9 } { 3 + 3 \sin \theta }

(Multiple Choice)
4.8/5
(47)

Find the center, foci, and vertices of the ellipse. - 16x2+y2256x+1,008=016 x ^ { 2 } + y ^ { 2 } - 256 x + 1,008 = 0

(Multiple Choice)
4.9/5
(31)

Rotate the axes so that the new equation contains no xy-term. Discuss the new equati - 24xy7y2+36=024 x y - 7 y ^ { 2 } + 36 = 0

(Multiple Choice)
4.9/5
(30)

Find parametric equations for the rectangular equation. - y=x44y = x ^ { 4 } - 4

(Multiple Choice)
4.9/5
(32)

Find an equation for the ellipse described. Graph the equation. -Center at (2,3);( - 2,3 ) ; focus at (7,3);( - 7,3 ) ; contains the point (8,3)( - 8,3 )  Find an equation for the ellipse described. Graph the equation. -Center at  ( - 2,3 ) ;  focus at  ( - 7,3 ) ;  contains the point  ( - 8,3 )

(Multiple Choice)
4.7/5
(39)

Rotate the axes so that the new equation contains no xy-term. Graph the new equation. - xy+16=0x y+16=0  Rotate the axes so that the new equation contains no xy-term. Graph the new equation. - x y+16=0

(Multiple Choice)
4.9/5
(41)

Solve the problem. -A reflecting telescope has a mirror shaped like a paraboloid of revolution. If the distance of the vertex to the focus is 31 feet and the distance across the top of the mirror is 66 inches, how deep is the mirror in the center? A) 1211984\frac { 121 } { 1984 } in. B) 363496\frac { 363 } { 496 } in. C) 961132\frac { 961 } { 132 } in. D) 1089124in\frac { 1089 } { 124 } \mathrm { in } .

(Multiple Choice)
4.7/5
(38)

Find an equation of the parabola described. -Focus at (-3, 0); directrix the line x = 3 A) y2=12xy ^ { 2 } = - 12 x B) x2=12yx ^ { 2 } = - 12 y C) y2=3xy ^ { 2 } = - 3 x D) y2=12xy ^ { 2 } = 12 x

(Multiple Choice)
4.9/5
(41)

Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x3)2=(y3)(x-3)^{2}=(y-3)  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3)^{2}=(y-3)     A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25       A) vertex: (3,3) focus: (3,3.25) directrix: y=2.75  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3)^{2}=(y-3)     A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25       B) vertex: (-3,-3) focus: (-2.75,-3) directrix: x=-3.25  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3)^{2}=(y-3)     A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25       C) vertex: (3,3) focus: (3.25,3) directrix: x=2.75  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3)^{2}=(y-3)     A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25       D) vertex: (3,3) (-3,-3) focus: (3,2.75) (-3,-2.75) directrix: y=3.25 y=-3.25  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (x-3)^{2}=(y-3)     A)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3,3.25) \\ \text { directrix: } y=2.75 \end{array}     B)  \begin{array}{l} \text { vertex: }(-3,-3) \\ \text { focus: }(-2.75,-3) \\ \text { directrix: } x=-3.25 \end{array}     C)  \begin{array}{l} \text { vertex: }(3,3) \\ \text { focus: }(3.25,3) \\ \text { directrix: } x=2.75 \end{array}      D) vertex:   (-3,-3)   focus:   (-3,-2.75)   directrix:   y=-3.25

(Multiple Choice)
4.8/5
(35)

Graph the hyperbola. -The roof of a building is in the shape of the hyperbola y2x2=49y ^ { 2 } - x ^ { 2 } = 49 , where xx and yy are in meters. Determine the distance, ww , the outside walls are apart, if the height of each wall is 12 m12 \mathrm {~m} .  Graph the hyperbola. -The roof of a building is in the shape of the hyperbola  y ^ { 2 } - x ^ { 2 } = 49 , where  x  and  y  are in meters. Determine the distance,  w , the outside walls are apart, if the height of each wall is  12 \mathrm {~m} .

(Multiple Choice)
4.7/5
(37)

Find the center, foci, and vertices of the ellipse. - x281+y29=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 9 } = 1

(Multiple Choice)
4.8/5
(38)

Find the vertex, focus, and directrix of the parabola with the given equation. - (x+1)2=12(y4)( x + 1 ) ^ { 2 } = 12 ( y - 4 )

(Multiple Choice)
4.9/5
(40)

Rotate the axes so that the new equation contains no xy-term. Discuss the new equati - 5x26xy+5y28=05 x ^ { 2 } - 6 x y + 5 y ^ { 2 } - 8 = 0

(Multiple Choice)
4.9/5
(31)

Graph the curve whose parametric equations are given. - x=3cost,y=3sint;π2t3π2x = 3 \cos t , y = - 3 \sin t ; \frac { \pi } { 2 } \leq t \leq \frac { 3 \pi } { 2 }  Graph the curve whose parametric equations are given. - x = 3 \cos t , y = - 3 \sin t ; \frac { \pi } { 2 } \leq t \leq \frac { 3 \pi } { 2 }

(Multiple Choice)
4.9/5
(35)
Showing 181 - 197 of 197
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)