Exam 9: Analytic Geometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Rotate the axes so that the new equation contains no xy-term. Graph the new equation. - 5x26xy+5y28=05 x^{2}-6 x y+5 y^{2}-8=0  Rotate the axes so that the new equation contains no xy-term. Graph the new equation. - 5 x^{2}-6 x y+5 y^{2}-8=0

(Multiple Choice)
4.7/5
(31)

Find an equation of the parabola described. -Directrix the line y = 3; vertex at (0, 0) A) y=112x2y = - \frac { 1 } { 12 } x ^ { 2 } B) y=12x2y = - 12 x ^ { 2 } C) x=3y2x = 3 y ^ { 2 } D) x=112y2x = - \frac { 1 } { 12 } y ^ { 2 }

(Multiple Choice)
4.8/5
(44)

Find an equation for the ellipse described. -Center at (0,0)( 0,0 ) ; focus at (0,2)( 0,2 ) ; vertex at (0,3)( 0,3 )

(Multiple Choice)
5.0/5
(36)

Solve the problem. -A hall 130 feet in length was designed as a whispering gallery. If the ceiling is 25 feet high at the center, how far from the center are the foci located?

(Short Answer)
4.8/5
(30)

Find an equation for the ellipse described. -Vertices at (4,5)( - 4,5 ) and (16,5)( 16,5 ) ; focus at (14,5)( 14,5 )

(Multiple Choice)
4.9/5
(36)

Graph the hyperbola. - (y+1)29(x2)2=9(y+1)^{2}-9(x-2)^{2}=9  Graph the hyperbola. - (y+1)^{2}-9(x-2)^{2}=9

(Multiple Choice)
4.9/5
(38)

Find a rectangular equation for the plane curve defined by the parametric equations. - x=t3+1,y=t310;2t2x = t ^ { 3 } + 1 , y = t ^ { 3 } - 10 ; - 2 \leq t \leq 2

(Multiple Choice)
4.9/5
(39)

Find a polar equation for the conic. A focus is at the pole. - e=12;\mathrm { e } = \frac { 1 } { 2 } ; directrix is perpendicular to the polar axis 2 to the left of the pole

(Multiple Choice)
4.8/5
(34)

Graph the hyperbola. - 25y24x2=10025 y^{2}-4 x^{2}=100  Graph the hyperbola. - 25 y^{2}-4 x^{2}=100

(Multiple Choice)
4.8/5
(47)

Rotate the axes so that the new equation contains no xy-term. Graph the new equation. - x2+2xy+y28x+8y=0x^{2}+2 x y+y^{2}-8 x+8 y=0  Rotate the axes so that the new equation contains no xy-term. Graph the new equation. - x^{2}+2 x y+y^{2}-8 x+8 y=0

(Multiple Choice)
4.9/5
(40)

Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2)2=8(x+3)(y+2)^{2}=8(x+3)  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2)^{2}=8(x+3)     A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}       A) vertex: (2,3) (2,3) focus: (4,3) (4,3) directrix: x=0 x=0  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2)^{2}=8(x+3)     A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}       B) vertex: (-3,-2) focus: (-1,-2) directrix: x=-5  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2)^{2}=8(x+3)     A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}       C) vertex: (3,2) (3,2) focus: (3,4) (3,4) directrix: y=0 y=0  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2)^{2}=8(x+3)     A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}       D) vertex: (-3,-2) focus: (-3,0) directrix: y=-4  Find the vertex, focus, and directrix of the parabola. Graph the equation. - (y+2)^{2}=8(x+3)     A) vertex:   (2,3)   focus:   (4,3)   directrix:   x=0       B)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-1,-2) \\ \text { directrix: } x=-5 \end{array}     C) vertex:   (3,2)   focus:   (3,4)   directrix:   y=0      D)  \begin{array}{l} \text { vertex: }(-3,-2) \\ \text { focus: }(-3,0) \\ \text { directrix: } y=-4 \end{array}

(Multiple Choice)
4.8/5
(38)

Convert the polar equation to a rectangular equation. - r=44+cosθr = \frac { 4 } { 4 + \cos \theta }

(Multiple Choice)
4.8/5
(41)

Name the conic. -Name the conic. -

(Multiple Choice)
5.0/5
(39)

Find an equation for the hyperbola described. -Vertices at (0,±8);( 0 , \pm 8 ) ; asymptotes at y=±43xy = \pm \frac { 4 } { 3 } x

(Multiple Choice)
4.7/5
(35)

Write an equation for the parabola. - Write an equation for the parabola. -  A)  y ^ { 2 } = 8 x  B)  x ^ { 2 } = - 8 y  C)  x ^ { 2 } = 8 y  D)  y ^ { 2 } = - 8 x A) y2=8xy ^ { 2 } = 8 x B) x2=8yx ^ { 2 } = - 8 y C) x2=8yx ^ { 2 } = 8 y D) y2=8xy ^ { 2 } = - 8 x

(Multiple Choice)
4.8/5
(32)

Rotate the axes so that the new equation contains no xy-term. Graph the new equation. - x2+xy+y23y6=0x^{2}+x y+y^{2}-3 y-6=0  Rotate the axes so that the new equation contains no xy-term. Graph the new equation. - x^{2}+x y+y^{2}-3 y-6=0

(Multiple Choice)
4.9/5
(38)

Find the vertex, focus, and directrix of the parabola with the given equation. - (x2)2=20(y3)( x - 2 ) ^ { 2 } = - 20 ( y - 3 )

(Multiple Choice)
4.7/5
(42)

Solve the problem. -A sealed-beam headlight is in the shape of a paraboloid of revolution. The bulb, which is placed at the focus, is 3 centimeters from the vertex. If the depth is to be 6 centimeters, what is the diameter of the headlight at its opening?

(Short Answer)
4.9/5
(47)

Find an equation for the hyperbola described. -Vertices at (±2,0)( \pm 2,0 ) ; foci at (±11,0)( \pm 11,0 )

(Multiple Choice)
4.9/5
(43)

Graph the ellipse and locate the foci. - 16x2+9y2=14416 x^{2}+9 y^{2}=144  Graph the ellipse and locate the foci. - 16 x^{2}+9 y^{2}=144

(Multiple Choice)
4.8/5
(37)
Showing 161 - 180 of 197
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)