Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the exact value under the given conditions. - sinα=35,3π2<α<2π;cosβ=215,π<β<3π2\sin \alpha = - \frac { 3 } { 5 } , \frac { 3 \pi } { 2 } < \alpha < 2 \pi ; \quad \cos \beta = - \frac { \sqrt { 21 } } { 5 } , \pi < \beta < \frac { 3 \pi } { 2 } \quad Find sin(αβ)\sin ( \alpha - \beta )

(Multiple Choice)
4.9/5
(40)

Use the Half-angle Formulas to find the exact value of the trigonometric function. - cos22.5\cos 22.5 ^ { \circ }

(Multiple Choice)
4.8/5
(31)

Find the exact value of the expression. - sin(sin123+cos113)\sin \left( \sin ^ { - 1 } \frac { 2 } { 3 } + \cos ^ { - 1 } \frac { 1 } { 3 } \right)

(Multiple Choice)
4.7/5
(40)

Solve the problem. -If cos2θ=2425\cos 2 \theta = - \frac { 24 } { 25 } , and π2<2θ<π\frac { \pi } { 2 } < 2 \theta < \pi , then find sinθ\sin \theta

(Multiple Choice)
4.8/5
(45)

Use the information given about the angle θ, 0 ≤θ ≤ 2π, to find the exact value of the indicated trigonometric function. - cosθ=45,3π2θ2π\cos \theta = \frac { 4 } { 5 } , \frac { 3 \pi } { 2 } \leq \theta \leq 2 \pi Find cosθ2\cos \frac { \theta } { 2 } .

(Multiple Choice)
4.8/5
(37)

Complete the identity. - sin(4θ)+sin(8θ)cos(4θ)+cos(8θ)=?\frac { \sin ( 4 \theta ) + \sin ( 8 \theta ) } { \cos ( 4 \theta ) + \cos ( 8 \theta ) } = ?

(Multiple Choice)
4.8/5
(31)

Use the information given about the angle θ,0θ2π\theta , 0 \leq \theta \leq 2 \pi , to find the exact value of the indicated trigonometric function. - cscθ=1715,π2<θ<π\csc \theta = \frac { 17 } { 15 } , \frac { \pi } { 2 } < \theta < \pi Find cos(2θ)\cos ( 2 \theta ) .

(Multiple Choice)
5.0/5
(40)

Find the exact value under the given conditions. - cosα=513,π2<α<π;sinβ=1517,π2<α<π\cos \alpha = - \frac { 5 } { 13 } , \frac { \pi } { 2 } < \alpha < \pi ; \quad \sin \beta = \frac { 15 } { 17 } , \frac { \pi } { 2 } < \alpha < \pi \quad Find tan(α+β)\tan ( \alpha + \beta ) .

(Multiple Choice)
4.9/5
(30)

Use a calculator to find the value of the expression in radian measure rounded to two decimal places. - cot1(57)\cot ^ { - 1 } \left( - \frac { 5 } { 7 } \right)

(Multiple Choice)
4.9/5
(37)

Solve the problem. -Rewrite in terms of sine and cosine: tanxcotx\tan x \cdot \cot x

(Short Answer)
4.9/5
(32)

Find the domain of the function f and of its inverse function f1\mathrm { f } ^ { - 1 } . - f(x)=3sinx5f ( x ) = 3 \sin x - 5

(Multiple Choice)
5.0/5
(41)

Solve the problem. - sin4x=(4sinxcosx)(12sin2x)\sin 4 x = ( 4 \sin x \cos x ) \left( 1 - 2 \sin ^ { 2 } x \right)

(Essay)
4.8/5
(33)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi \text {. } - cosθ+sinθ=0\cos \theta + \sin \theta = 0

(Multiple Choice)
4.9/5
(39)

Complete the identity. - sin2θ+sin2θcot2θ=\sin ^ { 2 } \theta + \sin ^ { 2 } \theta \cot ^ { 2 } \theta = ?

(Multiple Choice)
4.9/5
(38)

Use the information given about the angle θ, 0 ≤θ ≤ 2π, to find the exact value of the indicated trigonometric function. - cscθ=32,tanθ>0\csc \theta = - \frac { 3 } { 2 } , \tan \theta > 0 \quad Find cosθ2\cos \frac { \theta } { 2 } .

(Multiple Choice)
5.0/5
(41)

Find the exact solution of the equation. - cos1x=0\cos ^ { - 1 } x = 0

(Multiple Choice)
4.8/5
(30)

Find the exact value of the expression. - sec(tan133)\sec \left( \tan ^ { - 1 } \frac { \sqrt { 3 } } { 3 } \right)

(Multiple Choice)
4.9/5
(39)

Find the exact value of the expression. - cos1[cos(0.9372)]\cos ^ { - 1 } [ \cos ( - 0.9372 ) ]

(Multiple Choice)
4.9/5
(39)

Find the exact value of the composition. - cos(sin1(14))\cos \left( \sin ^ { - 1 } \left( \frac { 1 } { 4 } \right) \right)

(Multiple Choice)
4.8/5
(35)

Use the information given about the angle θ,0θ2π\theta , 0 \leq \theta \leq 2 \pi , to find the exact value of the indicated trigonometric function. - cscθ=32,tanθ>0\csc \theta = - \frac { 3 } { 2 } , \quad \tan \theta > 0 \quad Find cos(2θ)\cos ( 2 \theta )

(Multiple Choice)
4.8/5
(34)
Showing 201 - 220 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)