Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Establish the identity. - cos2xsin2x=12sin2x\cos ^ { 2 } x - \sin ^ { 2 } x = 1 - 2 \sin ^ { 2 } x

(Essay)
4.9/5
(30)

Solve the problem using Snell's Law: sinθ1sinθ2=v1v2\frac { \sin \theta _ { 1 } } { \sin \theta _ { 2 } } = \frac { v _ { 1 } } { v _ { 2 } } -A light beam traveling through air makes an angle of incidence of 39° upon a second medium. The refracted beam makes an angle of refraction of 28°. What is the index of refraction of the material of the second medium? Give the answer to two decimal places.

(Multiple Choice)
4.9/5
(36)

Find the exact value of the expression. - cos(5π18)cos(2π9)sin(5π18)sin(2π9)\cos \left( \frac { 5 \pi } { 18 } \right) \cos \left( \frac { 2 \pi } { 9 } \right) - \sin \left( \frac { 5 \pi } { 18 } \right) \sin \left( \frac { 2 \pi } { 9 } \right)

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Find sinθ2\sin \frac { \theta } { 2 } , given that cosθ=14\cos \theta = \frac { 1 } { 4 } and θ\theta terminates in 0<θ<900 < \theta < 90 ^ { \circ } .

(Multiple Choice)
4.7/5
(38)

Solve the problem. -On a Touch-Tone phone, each button produces a unique sound. The sound produced is the sum of two tones, gi' y=sin(2πlt)y = \sin ( 2 \pi l t ) and y=sin(2πht)y = \sin ( 2 \pi h t ) where ll and hh are the low and high frequencies (cycles per second) shown on the illustration.  Solve the problem. -On a Touch-Tone phone, each button produces a unique sound. The sound produced is the sum of two tones, gi'  y = \sin ( 2 \pi l t )  and  y = \sin ( 2 \pi h t )  where  l  and  h  are the low and high frequencies (cycles per second) shown on the illustration.    The sound produced is thus given by  y = \sin ( 2 \pi l t ) + \sin ( 2 \pi h t )  Write the sound emitted by touching the 4 key as a product of sines and cosines. The sound produced is thus given by y=sin(2πlt)+sin(2πht)y = \sin ( 2 \pi l t ) + \sin ( 2 \pi h t ) Write the sound emitted by touching the 4 key as a product of sines and cosines.

(Multiple Choice)
4.8/5
(35)

Complete the identity. - sin2θ1sinθ+1=?\frac { \sin ^ { 2 } \theta - 1 } { \sin \theta + 1 } = ?

(Multiple Choice)
4.9/5
(40)

Use a graphing utility to solve the equation on the interval 0 0x<3600 ^ { \circ } \leq x < 360 ^ { \circ } . Express the solution(s) rounded to one decimal place. - cos2x+cosx1=0\cos ^ { 2 } x + \cos x - 1 = 0

(Multiple Choice)
4.8/5
(38)

Find the domain of the function f and of its inverse function f1\mathrm { f } ^ { - 1 } . - f(x)=8cos(10x+4)f ( x ) = - 8 \cos ( 10 x + 4 )

(Multiple Choice)
4.9/5
(37)

Establish the identity. - 12secx3sec2xtan2x=13secx1secx\frac { 1 - 2 \sec x - 3 \sec ^ { 2 } x } { - \tan ^ { 2 } x } = \frac { 1 - 3 \sec x } { 1 - \sec x }

(Essay)
4.8/5
(32)

Find the exact value of the expression. - sin122\sin ^ { - 1 } \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
4.8/5
(32)

Use the information given about the angle θ,0θ2π\theta , 0 \leq \theta \leq 2 \pi , to find the exact value of the indicated trigonometric function. - sinθ=45,3π2<θ<2π\sin \theta = - \frac { 4 } { 5 } , \frac { 3 \pi } { 2 } < \theta < 2 \pi \quad Find cos(2θ).\cos ( 2 \theta ) .

(Multiple Choice)
4.9/5
(45)

Complete the identity. - sinθcosθ+cosθsinθ= ? \frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = \text { ? }

(Multiple Choice)
4.8/5
(27)

Solve the problem. -You are flying a kite and want to know its angle of elevation. The string on the kite is 43 meters long and the kite is level with the top of a building that you know is 28 meters high. Use an inverse trigonometric function to find the angle of elevation of the kite. Round to two decimal places.

(Short Answer)
5.0/5
(31)

Solve the problem. -The two equal sides of an isosceles triangle measure three feet. Let the angle between the sides measure θ\theta . Find the area A of the triangle as a function of θ2\frac { \theta } { 2 } . The answer may include more than one trigonometric function.

(Essay)
4.8/5
(45)

Complete the identity. - sinθ2cosθ2=?\sin \frac { \theta } { 2 } \cos \frac { \theta } { 2 } = ?

(Multiple Choice)
4.8/5
(29)

Solve the problem. -A product of two oscillations with different frequencies such as f(t)=sin(10t)sin(t)f ( t ) = \sin ( 10 t ) \sin ( t ) is important in acoustics. The result is an oscillation with "oscillating amplitude." (i) Writethe product f(t)\mathrm { f } ( \mathrm { t } ) of the two oscillations as a sum of two cosines and call it g(t)g ( \mathrm { t } ) . (ii) Usinga graphing utility, graph the function g(t)g ( t ) on the interval 0t2π0 \leq t \leq 2 \pi . (iii) On the same system as your graph, graph y=sinty = \sin t and y=sinty = - \sin t . (iv) Thelast two functions constitute an "envelope" for the function g(t)g ( t ) . For certain values of tt , the two cosine functions in g(t)g ( t ) cancel each other out and near-silence occurs; between these values, the two functions combine in varying degrees. The phenomenon is known (and heard) as "beats." For what values of tt do the functions cancel each other?

(Essay)
4.9/5
(30)

Solve the problem. -Find tanθ2\tan \frac { \theta } { 2 } , given that tanθ=3\tan \theta = 3 and θ\theta terminates in π<θ<3π/2\pi < \theta < 3 \pi / 2

(Multiple Choice)
4.7/5
(46)

Find the exact value of the expression. Do not use a calculator. - sin[sin1(0.7)]\sin \left[ \sin ^ { - 1 } ( - 0.7 ) \right]

(Multiple Choice)
4.9/5
(40)

Find the exact value under the given conditions. - cosα=513,π2<α<π;sinβ=817,π2<α<π\cos \alpha = - \frac { 5 } { 13 } , \frac { \pi } { 2 } < \alpha < \pi ; \quad \sin \beta = \frac { 8 } { 17 } , \frac { \pi } { 2 } < \alpha < \pi \quad Find tan(αβ)\tan ( \alpha - \beta ) .

(Multiple Choice)
4.9/5
(42)

Find the exact value under the given conditions. - sinα=2029,π2<α<π;cosβ=35,0<β<π2\sin \alpha = \frac { 20 } { 29 } , \frac { \pi } { 2 } < \alpha < \pi ; \quad \cos \beta = \frac { 3 } { 5 } , 0 < \beta < \frac { \pi } { 2 } \quad Find sin(αβ)\sin ( \alpha - \beta ) .

(Multiple Choice)
4.8/5
(35)
Showing 341 - 360 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)