Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Complete the identity. - cos(αβ)sinαcosβ=?\frac { \cos ( \alpha - \beta ) } { \sin \alpha \cos \beta } = ?

(Multiple Choice)
4.8/5
(34)

Find the exact value of the expression. - tan(sin122)\tan \left( \sin ^ { - 1 } \frac { \sqrt { 2 } } { 2 } \right)

(Multiple Choice)
4.9/5
(29)

Complete the identity. - secθsinθtanθ1= ? \frac { \sec \theta \sin \theta } { \tan \theta } - 1 = \text { ? }

(Multiple Choice)
4.8/5
(37)

Use a calculator to solve the equation on the interval 0 0θ<2π0 \leq \theta < 2 \pi . Round the answer to two decimal places. - 2cscθ=52 \csc \theta = 5

(Multiple Choice)
4.8/5
(34)

Solve the equation. Give a general formula for all the solutions. - cosθ=0\cos \theta = 0

(Multiple Choice)
4.8/5
(41)

Find the inverse function f1\mathrm { f } ^ { - 1 } of the function f. - f(x)=3sinx2f ( x ) = 3 \sin x - 2 A) f1(x)=3sin1x2f ^ { - 1 } ( x ) = 3 \sin ^ { - 1 } x - 2 B) f1(x)=sin1(x+23)\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sin ^ { - 1 } \left( \frac { \mathrm { x } + 2 } { 3 } \right) C) f1(x)=cos(x+23)\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \cos \left( \frac { \mathrm { x } + 2 } { 3 } \right) D) f1(x)=sin1(x+32)\mathrm { f } ^ { - 1 } ( \mathrm { x } ) = \sin ^ { - 1 } \left( \frac { \mathrm { x } + 3 } { 2 } \right)

(Multiple Choice)
4.9/5
(40)

Solve the problem. - cos3x=cos3x3sin2xcosx\cos 3 x = \cos ^ { 3 } x - 3 \sin ^ { 2 } x \cos x

(Essay)
4.7/5
(30)

Solve the problem. - sin4u=2sin2ucos2u\sin 4 u = 2 \sin 2 u \cos 2 u

(Essay)
4.9/5
(25)

Write the trigonometric expression as an algebraic expression in u. - tan(csc1u)\tan \left( \csc ^ { - 1 } \mathrm { u } \right)

(Multiple Choice)
4.9/5
(36)

Use a graphing utility to solve the equation on the interval 0 0x<3600 ^ { \circ } \leq x < 360 ^ { \circ } . Express the solution(s) rounded to one decimal place. - 7cot2x5=07 \cot ^ { 2 } x - 5 = 0

(Multiple Choice)
4.9/5
(38)

Solve the problem. -Before exercising, an athlete measures her air flow and obtains a=0.65sin(2π5t)a = 0.65 \sin \left( \frac { 2 \pi } { 5 } t \right) where a is measured in liters per second and t is the time in seconds. If a > 0, the athlete is inhaling; if a < 0, the athlete is exhaling. The time to complete one complete inhalation/exhalation sequence is a respiratory cycle. Find the values of t for which the athlete's air flow is zero. Find all values of t for t < 20 seconds.

(Essay)
4.7/5
(41)

Solve the problem. - sin33x=12(sin3x)(1cos6x)\sin ^ { 3 } 3 x = \frac { 1 } { 2 } ( \sin 3 x ) ( 1 - \cos 6 x )

(Essay)
4.8/5
(34)

Find the exact value of the expression. - cot1(1)\cot ^ { - 1 } ( - 1 )

(Multiple Choice)
4.9/5
(29)

Find the exact value of the expression. - tan(tan134+sin112)\tan \left( \tan ^ { - 1 } \frac { 3 } { 4 } + \sin ^ { - 1 } \frac { 1 } { 2 } \right)

(Multiple Choice)
4.9/5
(35)

Solve the problem. -Find cosθ2\cos \frac { \theta } { 2 } , given that secθ=4\sec \theta = 4 and θ\theta terminates in 0<θ<π/20 < \theta < \pi / 2 .

(Multiple Choice)
4.8/5
(39)

Find the exact value of the expression. - tan70tan(50)1+tan70tan(50)\frac { \tan 70 ^ { \circ } - \tan \left( - 50 ^ { \circ } \right) } { 1 + \tan 70 ^ { \circ } \tan \left( - 50 ^ { \circ } \right) }

(Multiple Choice)
4.9/5
(42)

Solve the problem. -If cosθ=513\cos \theta = - \frac { 5 } { 13 } , and θ\theta terminates in quadrant II, then find cos2θ\cos 2 \theta .

(Multiple Choice)
4.8/5
(37)

Use a graphing utility to solve the equation on the interval 0 0x<3600 ^ { \circ } \leq x < 360 ^ { \circ } . Express the solution(s) rounded to one decimal place. -tan2 x + 5 tan x + 3 = 0

(Multiple Choice)
4.7/5
(39)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi - sin(4θ)=32\sin ( 4 \theta ) = \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.7/5
(35)

Establish the identity. - tan2x+sec2x=sec2xcos2x- \tan ^ { 2 } x + \sec ^ { 2 } x = \sec ^ { 2 } x \cos ^ { 2 } x

(Essay)
4.9/5
(40)
Showing 321 - 340 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)