Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the exact value of the composition. - sin(tan1(2))\sin \left( \tan ^ { - 1 } ( 2 ) \right)

(Multiple Choice)
4.8/5
(33)

Find the inverse function f1\mathrm { f } ^ { - 1 } of the function f. - f(x)=sin(x+6)5f ( x ) = - \sin ( x + 6 ) - 5

(Multiple Choice)
4.8/5
(44)

Express the product as a sum containing only sines or cosines. - sin(4θ)cos(2θ)\sin ( 4 \theta ) \cos ( 2 \theta )

(Multiple Choice)
4.8/5
(34)

Establish the identity. - sec(π2+u)=cscu\sec \left( \frac { \pi } { 2 } + u \right) = - \csc u

(Essay)
4.9/5
(29)

Find the exact value of the expression. - cos[tan1(33)]\cos \left[ \tan ^ { - 1 } \left( \frac { \sqrt { 3 } } { 3 } \right) \right]

(Multiple Choice)
4.9/5
(40)

Establish the identity. - csc3xtan2x=cscx(1+tan2x)\csc ^ { 3 } x \tan ^ { 2 } x = \csc x \left( 1 + \tan ^ { 2 } x \right)

(Essay)
4.8/5
(42)

Establish the identity. - tant1cott+1+cotttant=tan2t+2csc2ttant1\frac { \tan t } { 1 - \cot t } + \frac { 1 + \cot t } { \tan t } = \frac { \tan ^ { 2 } t + 2 - \csc ^ { 2 } t } { \tan t - 1 }

(Essay)
4.8/5
(33)

Establish the identity. - tan2x=sec2xsin2xcos2x\tan ^ { 2 } x = \sec ^ { 2 } x - \sin ^ { 2 } x - \cos ^ { 2 } x

(Essay)
4.7/5
(34)

Find the exact solution of the equation. - 4tan1x=π- 4 \tan ^ { - 1 } x = \pi

(Multiple Choice)
4.9/5
(41)

Use a calculator to find the value of the expression rounded to two decimal places. - cos1(45)\cos ^ { - 1 } \left( - \frac { 4 } { 5 } \right)

(Multiple Choice)
4.9/5
(39)

Find the exact value of the expression. - sin255\sin 255 ^ { \circ }

(Multiple Choice)
4.9/5
(43)

Establish the identity. - 1sintcost=cost1+sint\frac { 1 - \sin t } { \cos t } = \frac { \cos t } { 1 + \sin t }

(Essay)
4.9/5
(35)

Use a calculator to find the value of the expression in radian measure rounded to two decimal places. - sec1(73)\sec ^ { - 1 } \left( - \frac { 7 } { 3 } \right)

(Multiple Choice)
4.9/5
(50)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi - secθ2=cosθ2\sec \frac { \theta } { 2 } = \cos \frac { \theta } { 2 }

(Multiple Choice)
4.9/5
(35)

Solve the problem. -If sinθ=45\sin \theta = - \frac { 4 } { 5 } , and 3π2<θ<2π\frac { 3 \pi } { 2 } < \theta < 2 \pi , then find tan2θ\tan 2 \theta .

(Multiple Choice)
4.9/5
(35)

Find the exact value of the expression. - sin195cos75cos195sin75\sin 195 ^ { \circ } \cos 75 ^ { \circ } - \cos 195 ^ { \circ } \sin 75 ^ { \circ }

(Multiple Choice)
4.9/5
(31)

Establish the identity. - sin(xπ4)=22(sinxcosx)\sin \left( x - \frac { \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } ( \sin x - \cos x )

(Essay)
4.8/5
(37)

Find the inverse function f1\mathrm { f } ^ { - 1 } of the function f. - f(x)=4tan(9x)f ( x ) = 4 \tan ( 9 x )

(Multiple Choice)
4.8/5
(43)

Use a graphing utility to solve the equation on the interval 0 0x<3600 ^ { \circ } \leq x < 360 ^ { \circ } . Express the solution(s) rounded to one decimal place. - sin2x+8sinx4=0\sin ^ { 2 } x + 8 \sin x - 4 = 0

(Multiple Choice)
4.8/5
(40)

Use a calculator to find the value of the expression in radian measure rounded to two decimal places. - sec1(54)\sec ^ { - 1 } \left( - \frac { 5 } { 4 } \right)

(Multiple Choice)
4.9/5
(32)
Showing 221 - 240 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)