Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -If tanθ=724\tan \theta = \frac { 7 } { 24 } , and θ\theta terminates in quadrant III, then find cos2θ\cos 2 \theta .

(Multiple Choice)
4.9/5
(36)

Establish the identity. - sinx1cosx+sinx1+cosx=2cscx\frac { \sin x } { 1 - \cos x } + \frac { \sin x } { 1 + \cos x } = 2 \csc x

(Essay)
4.9/5
(43)

Find the domain of the function f and of its inverse function f1\mathrm { f } ^ { - 1 } . - f(x)=cos(x3)+4f ( x ) = \cos ( x - 3 ) + 4

(Multiple Choice)
4.9/5
(44)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi \text {. } - sinθ+3cosθ=1\sin \theta + \sqrt { 3 } \cos \theta = - 1

(Multiple Choice)
4.8/5
(36)

Solve the problem. -The formula D=24[1cos1(tanitanθ)π]\mathrm { D } = 24 \left[ 1 - \frac { \cos ^ { - 1 } ( \tan i \tan \theta ) } { \pi } \right] can be used to approximate the number of hours of daylight when the declination of the sun is ii ^ { \circ } at a location θ\theta ^ { \circ } latitude for any date between the vernal equinox and autumnal equinox. To use this formula, cos1(tanitanθ\cos ^ { - 1 } \left( \tan ^ { i } \tan \theta \right. ) must be expressed in radians. Approximate the number of hours of daylight in Flagstaff, Arizona, ( 351335 ^ { \circ } 13 ^ { \prime } north latitude) for summer solstice (i=23.5)\left( \mathrm { i } = 23.5 ^ { \circ } \right) .

(Short Answer)
4.7/5
(24)

Complete the identity. - cos(sin1v)=?\cos \left( \sin ^ { - 1 } v \right) = ?

(Multiple Choice)
4.7/5
(37)

Use the information given about the angle θ, 0 ≤θ ≤ 2π, to find the exact value of the indicated trigonometric function. - sinθ=14,0<θ<π2\sin \theta = \frac { 1 } { 4 } , \quad 0 < \theta < \frac { \pi } { 2 } \quad Find sinθ2\sin \frac { \theta } { 2 }

(Multiple Choice)
4.7/5
(34)

Solve the equation on the interval 0θ<2π.0 \leq \theta < 2 \pi . - 2sin2θ=sinθ2 \sin ^ { 2 } \theta = \sin \theta

(Multiple Choice)
5.0/5
(48)

Find the exact value of the composition. - cos1(sin7π6)\cos ^ { - 1 } \left( \sin \frac { 7 \pi } { 6 } \right)

(Multiple Choice)
4.8/5
(31)

Complete the identity. - sin(2θ)tanθ+cos(2θ)=\sin ( 2 \theta ) \tan \theta + \cos ( 2 \theta ) = ?

(Multiple Choice)
4.7/5
(33)

Complete the identity. - 1cot2θ+secθcosθ=?\frac { 1 } { \cot ^ { 2 } \theta } + \sec \theta \cos \theta = ?

(Multiple Choice)
4.9/5
(37)

Find the exact value of the expression. Do not use a calculator. - cos[cos1(0.9372)]\cos \left[ \cos ^ { - 1 } ( - 0.9372 ) \right]

(Multiple Choice)
4.8/5
(32)

Use the information given about the angle θ, 0 ≤θ ≤ 2π, to find the exact value of the indicated trigonometric function. - secθ=54,π2<θ<π\sec \theta = - \frac { 5 } { 4 } , \frac { \pi } { 2 } < \theta < \pi \quad Find sinθ2\sin \frac { \theta } { 2 } .

(Multiple Choice)
4.9/5
(41)

Find the exact value of the expression. - 1tan80tan70tan80+tan70\frac { 1 - \tan 80 ^ { \circ } \tan 70 ^ { \circ } } { \tan 80 ^ { \circ } + \tan 70 ^ { \circ } }

(Multiple Choice)
4.9/5
(27)

Complete the identity. - cscθ(sin2θ+cos2θtanθ)sinθ+cosθ=?\frac { \csc \theta \left( \sin ^ { 2 } \theta + \cos ^ { 2 } \theta \tan \theta \right) } { \sin \theta + \cos \theta } = ?

(Multiple Choice)
4.8/5
(37)

Find the exact value of the expression. - cos(tan143sin135)\cos \left( \tan ^ { - 1 } \frac { 4 } { 3 } - \sin ^ { - 1 } \frac { 3 } { 5 } \right)

(Multiple Choice)
4.8/5
(33)

Find the domain of the function f and of its inverse function f1\mathrm { f } ^ { - 1 } . - f(x)=6tanx+10f ( x ) = 6 \tan x + 10

(Multiple Choice)
4.9/5
(40)

Write the trigonometric expression as an algebraic expression in u. - cos(tan1u)\cos \left( \tan ^ { - 1 } \mathrm { u } \right)

(Multiple Choice)
4.9/5
(38)

Complete the identity. - tanα+cotβ=?\tan \alpha + \cot \beta = ?

(Multiple Choice)
4.8/5
(37)

Establish the identity. - sin3xcos2x=sinx(cos2xcos4x)\sin ^ { 3 } x \cos ^ { 2 } x = \sin x \left( \cos ^ { 2 } x - \cos ^ { 4 } x \right)

(Essay)
4.9/5
(35)
Showing 21 - 40 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)