Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Express the product as a sum containing only sines or cosines. - sin(3θ)cos(4θ)\sin ( 3 \theta ) \cos ( 4 \theta )

(Multiple Choice)
4.9/5
(34)

Solve the problem. - tan2u(1+cos2u)=1cos2u\tan ^ { 2 } u ( 1 + \cos 2 u ) = 1 - \cos 2 u

(Essay)
4.8/5
(36)

Complete the identity. - tan(πθ)= ? \tan ( \pi - \theta ) = \text { ? }

(Multiple Choice)
4.8/5
(36)

Solve the problem using Snell's Law: sinθ1sinθ2=v1v2\frac { \sin \theta _ { 1 } } { \sin \theta _ { 2 } } = \frac { v _ { 1 } } { v _ { 2 } } -A ray of light near the horizon with an angle of incidence of 77° enters a pool of water and strikes a fish's eye. If the index of refraction is 1.33, what is the angle of refraction (to two decimal places)?

(Multiple Choice)
4.9/5
(36)

Find the exact value under the given conditions. - sinα=2425,π<α<3π2;tanβ=22121,π2<β<π\sin \alpha = - \frac { 24 } { 25 } , \pi < \alpha < \frac { 3 \pi } { 2 } ; \quad \tan \beta = - \frac { 2 \sqrt { 21 } } { 21 } , \frac { \pi } { 2 } < \beta < \pi \quad Find cos(α+β)\cos ( \alpha + \beta )

(Multiple Choice)
4.8/5
(43)

Solve the problem. -The average daily temperature T of a city in the United States is approximated by T=5523cos2π365(t30)T = 55 - 23 \cos \frac { 2 \pi } { 365 } ( t - 30 ) where t is in days, 1t3651 \leq t \leq 365 nd t = 1 corresponds to January 1. For what range of values of t is the average daily temperature above 70°F? Use a calculator and round answers to the nearest whole number.

(Essay)
4.9/5
(45)

Use a calculator to solve the equation on the interval 0 0x<2π0 \leq x < 2 \pi . Round the answer to one decimal place if necessary. - 2x3cosx=02 x - 3 \cos x = 0

(Short Answer)
4.8/5
(35)

Solve the problem. -When light travels from one medium to another-from air to water, for instance-it changes direction. (This is why a pencil, partially submerged in water, looks as though it is bent.) The angle of incidence θr\theta _ { \mathrm { r } } is the angle in the first medium; the angle of refraction θr\theta _ { \mathrm { r } } is the second medium. (See illustration.) Each medium has an index of refraction ni- \mathrm { n } _ { \mathrm { i } } and nr\mathrm { n } _ { \mathrm { r } } , respectively -which can be found in tables. Snell's law relates these quantities in the forr nisinθi=nrsinθr\mathrm { n } _ { \mathrm { i } } \sin \theta _ { \mathrm { i } } = \mathrm { n } _ { \mathrm { r } } \sin \theta _ { \mathrm { r } } Solving for θr\theta _ { \mathbf { r } } , we obtain θr=sin1(ninrsinθi)\theta _ { \mathrm { r } } = \sin ^ { - 1 } \left( \frac { \mathrm { n } _ { \mathrm { i } } } { \mathrm { n } _ { \mathrm { r } } } \sin \theta _ { \mathrm { i } } \right) Find θr\theta _ { \mathrm { r } } for air (ni=1.0003)\left( \mathrm { n } _ { \mathrm { i } } = 1.0003 \right) , methylene iodide (nr=1.74)\left( \mathrm { n } _ { \mathrm { r } } = 1.74 \right) , and θi=14.7\theta _ { \mathrm { i } } = 14.7 ^ { \circ } .  Solve the problem. -When light travels from one medium to another-from air to water, for instance-it changes direction. (This is why a pencil, partially submerged in water, looks as though it is bent.) The angle of incidence  \theta _ { \mathrm { r } }  is the angle in the first medium; the angle of refraction  \theta _ { \mathrm { r } }  is the second medium. (See illustration.) Each medium has an index of refraction  - \mathrm { n } _ { \mathrm { i } }  and  \mathrm { n } _ { \mathrm { r } } , respectively -which can be found in tables. Snell's law relates these quantities in the forr  \mathrm { n } _ { \mathrm { i } } \sin \theta _ { \mathrm { i } } = \mathrm { n } _ { \mathrm { r } } \sin \theta _ { \mathrm { r } }  Solving for  \theta _ { \mathbf { r } } , we obtain  \theta _ { \mathrm { r } } = \sin ^ { - 1 } \left( \frac { \mathrm { n } _ { \mathrm { i } } } { \mathrm { n } _ { \mathrm { r } } } \sin \theta _ { \mathrm { i } } \right)  Find  \theta _ { \mathrm { r } }  for air  \left( \mathrm { n } _ { \mathrm { i } } = 1.0003 \right) , methylene iodide  \left( \mathrm { n } _ { \mathrm { r } } = 1.74 \right) , and  \theta _ { \mathrm { i } } = 14.7 ^ { \circ } .

(Essay)
4.7/5
(36)

Establish the identity. - cosxsecx1cosxsecx+1=2cosxtan2x\frac { \cos x } { \sec x - 1 } - \frac { \cos x } { \sec x + 1 } = \frac { 2 \cos x } { \tan ^ { 2 } x }

(Essay)
4.9/5
(29)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi - sin(2θ)+sinθ=0\sin ( 2 \theta ) + \sin \theta = 0

(Multiple Choice)
4.8/5
(35)

Find the inverse function f1\mathrm { f } ^ { - 1 } of the function f. - f(x)=7cosx+4f ( x ) = 7 \cos x + 4

(Multiple Choice)
4.9/5
(30)

Use the Half-angle Formulas to find the exact value of the trigonometric function. - sin165\sin 165 ^ { \circ }

(Multiple Choice)
4.8/5
(36)

Solve the problem. -When light travels from one medium to another-from air to water, for instance-it changes direction. (This is why a pencil, partially submerged in water, looks as though it is bent.) The angle of incidence θi\theta _ { \mathrm { i } } is the angle in the first medium; the angle of refraction θr\theta _ { r } is the second medium. (See illustration.) Each medium has an index of refraction ni- n _ { i } and nrn _ { r } , respectively - which can be found in tables. Snell's law relates these quantities in the forr nisinθi=nrsinθr\mathrm { n } _ { \mathrm { i } } \sin \theta _ { \mathrm { i } } = \mathrm { n } _ { \mathrm { r } } \sin \theta _ { \mathrm { r } } Solving for θr\theta _ { \mathbf { r } } , we obtain θr=sin1(ninrsinθi)\theta _ { \mathrm { r } } = \sin ^ { - 1 } \left( \frac { \mathrm { n } _ { \mathrm { i } } } { \mathrm { n } _ { \mathrm { r } } } \sin \theta _ { \mathrm { i } } \right) Find θr\theta _ { \mathrm { r } } for fused quartz (ni=1.46)\left( \mathrm { n } _ { \mathrm { i } } = 1.46 \right) , ethyl alcohol (nr=1.36)\left( \mathrm { n } _ { \mathrm { r } } = 1.36 \right) , and θi=8.5\theta _ { \mathrm { i } } = 8.5 ^ { \circ } .  Solve the problem. -When light travels from one medium to another-from air to water, for instance-it changes direction. (This is why a pencil, partially submerged in water, looks as though it is bent.) The angle of incidence  \theta _ { \mathrm { i } }  is the angle in the first medium; the angle of refraction  \theta _ { r }  is the second medium. (See illustration.) Each medium has an index of refraction  - n _ { i }  and  n _ { r } , respectively  -  which can be found in tables. Snell's law relates these quantities in the forr  \mathrm { n } _ { \mathrm { i } } \sin \theta _ { \mathrm { i } } = \mathrm { n } _ { \mathrm { r } } \sin \theta _ { \mathrm { r } }  Solving for  \theta _ { \mathbf { r } } , we obtain  \theta _ { \mathrm { r } } = \sin ^ { - 1 } \left( \frac { \mathrm { n } _ { \mathrm { i } } } { \mathrm { n } _ { \mathrm { r } } } \sin \theta _ { \mathrm { i } } \right)  Find  \theta _ { \mathrm { r } }  for fused quartz  \left( \mathrm { n } _ { \mathrm { i } } = 1.46 \right) , ethyl alcohol  \left( \mathrm { n } _ { \mathrm { r } } = 1.36 \right) , and  \theta _ { \mathrm { i } } = 8.5 ^ { \circ } .    a a

(Essay)
4.7/5
(36)

Use a graphing utility to solve the equation on the interval 0 0x<3600 ^ { \circ } \leq x < 360 ^ { \circ } . Express the solution(s) rounded to one decimal place. - sin2x8sinx+16=0\sin ^ { 2 } x - 8 \sin x + 16 = 0

(Multiple Choice)
4.8/5
(32)

Find the domain of the function f and of its inverse function f1\mathrm { f } ^ { - 1 } . - f(x)=tan(x4)+7f ( x ) = \tan ( x - 4 ) + 7

(Multiple Choice)
4.9/5
(37)

Find the exact value of the expression. - cos285\cos 285 ^ { \circ }

(Multiple Choice)
4.9/5
(34)

Use a calculator to find the value of the expression rounded to two decimal places. - cos1(0.3)\cos ^ { - 1 } ( 0.3 )

(Multiple Choice)
4.9/5
(24)

Find the exact value of the expression. - cos20cos40sin20sin40\cos 20 ^ { \circ } \cos 40 ^ { \circ } - \sin 20 ^ { \circ } \sin 40 ^ { \circ }

(Multiple Choice)
4.8/5
(36)

Solve the equation. Give a general formula for all the solutions. - sinθ=0\sin \theta = 0

(Multiple Choice)
4.9/5
(37)

Use the Half-angle Formulas to find the exact value of the trigonometric function. - sin75\sin 75 ^ { \circ }

(Multiple Choice)
5.0/5
(31)
Showing 241 - 260 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)