Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Establish the identity. - cot2x=(cscx1)(cscx+1)\cot ^ { 2 } x = ( \csc x - 1 ) ( \csc x + 1 )

(Essay)
4.8/5
(32)

Find the domain of the function f and of its inverse function f1\mathrm { f } ^ { - 1 } . - f(x)=5cos(9x)f ( x ) = - 5 \cos ( 9 x )

(Multiple Choice)
4.8/5
(40)

Establish the identity. - csc(π2+u)=secu\csc \left( \frac { \pi } { 2 } + u \right) = \sec u

(Essay)
4.9/5
(42)

Establish the identity. - sec4xtan4x=sec2x+tan2x\sec ^ { 4 } x - \tan 4 x = \sec ^ { 2 } x + \tan ^ { 2 } x

(Essay)
4.8/5
(30)

Complete the identity. - sec4θ+sec2θtan2θ2tan4θ=\sec ^ { 4 } \theta + \sec ^ { 2 } \theta \tan ^ { 2 } \theta - 2 \tan ^ { 4 } \theta = ?

(Multiple Choice)
4.8/5
(47)

Solve the equation. Give a general formula for all the solutions. - tanθ=1\tan \theta = - 1

(Multiple Choice)
4.8/5
(37)

Find the exact value of the expression. - sin25cos95+cos25sin95\sin 25 ^ { \circ } \cos 95 ^ { \circ } + \cos 25 ^ { \circ } \sin 95 ^ { \circ }

(Multiple Choice)
4.7/5
(43)

Complete the identity. - sin(πθ)=?\sin ( \pi - \theta ) = ?

(Multiple Choice)
4.9/5
(38)

Use a calculator to find the value of the expression in radian measure rounded to two decimal places. - csc1(74)\csc ^ { - 1 } \left( - \frac { 7 } { 4 } \right)

(Multiple Choice)
4.9/5
(43)

Find the exact value of the expression. - tan175tan551+tan175tan55\frac { \tan 175 ^ { \circ } - \tan 55 ^ { \circ } } { 1 + \tan 175 ^ { \circ } \tan 55 ^ { \circ } }

(Multiple Choice)
4.9/5
(38)

Use a calculator to solve the equation on the interval 0 0x<2π0 \leq x < 2 \pi . Round the answer to one decimal place if necessary. - 2x23xsinx=22 x ^ { 2 } - 3 x \sin x = 2

(Short Answer)
4.9/5
(49)

Use the information given about the angle θ,0θ2π\theta , 0 \leq \theta \leq 2 \pi , to find the exact value of the indicated trigonometric function. - sinθ=2425,0<θ<π2\sin \theta = \frac { 24 } { 25 } , \quad 0 < \theta < \frac { \pi } { 2 } \quad Find cos(2θ)\cos ( 2 \theta ) .

(Multiple Choice)
4.7/5
(40)

Find the exact value of the expression.884:890 - cos[2sin1(513)]\cos \left[ 2 \sin ^ { - 1 } \left( - \frac { 5 } { 13 } \right) \right]

(Multiple Choice)
4.8/5
(30)

Solve the problem. -A mass hangs from a spring which oscillates up and down. The position P (in feet) of the mass at time t (in seconds) is given by P=4cos(4t)P = 4 \cos ( 4 t ) For what values of t,0t<πt , 0 \leq t < \pi , will the position be 222 \sqrt { 2 } feet? Find the exact values. Do not use a calculator.

(Essay)
4.8/5
(29)

Solve the problem. -Find sinθ2\sin \frac { \theta } { 2 } , given that sinθ=35\sin \theta = - \frac { 3 } { 5 } and θ\theta terminates in 270<θ<360270 ^ { \circ } < \theta < 360 ^ { \circ } .

(Multiple Choice)
4.8/5
(43)

Use a calculator to solve the equation on the interval 0 0θ<2π0 \leq \theta < 2 \pi . Round the answer to two decimal places. - sinθ=0.41\sin \theta = - 0.41

(Multiple Choice)
4.8/5
(33)

Solve the equation. Give a general formula for all the solutions. - 2cosθ+1=02 \cos \theta + 1 = 0

(Multiple Choice)
4.9/5
(29)

Establish the identity. - cot(x+y)cot(xy)=1tan2xtan2ytan2xtan2y\cot ( x + y ) \cot ( x - y ) = \frac { 1 - \tan ^ { 2 } x \tan ^ { 2 } y } { \tan ^ { 2 } x - \tan ^ { 2 } y }

(Essay)
4.8/5
(39)

Express the sum or difference as a product of sines and/or cosines. - sin(4θ)sin(2θ)\sin ( 4 \theta ) - \sin ( 2 \theta )

(Multiple Choice)
4.9/5
(38)

Solve the equation on the interval 0θ<2π.0 \leq \theta < 2 \pi . - cos2θ+2cosθ+1=0\cos ^ { 2 } \theta + 2 \cos \theta + 1 = 0

(Multiple Choice)
4.9/5
(42)
Showing 81 - 100 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)