Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Simplify the expression. - (1+cotθ)(1cotθ)csc2θ( 1 + \cot \theta ) ( 1 - \cot \theta ) - \csc ^ { 2 } \theta

(Multiple Choice)
4.9/5
(44)

Solve the problem. -Factor and simplify: 8sin2θ+9sinθ+1sin2θ1\frac { 8 \sin ^ { 2 } \theta + 9 \sin \theta + 1 } { \sin ^ { 2 } \theta - 1 }

(Essay)
4.8/5
(37)

Complete the identity. - 1cos2θ1cot2θ= ? \frac { 1 } { \cos ^ { 2 } \theta } - \frac { 1 } { \cot ^ { 2 } \theta } = \text { ? }

(Multiple Choice)
4.9/5
(34)

Find the exact value of the expression. - cos(2sin114)\cos \left( 2 \sin ^ { - 1 } \frac { 1 } { 4 } \right)

(Multiple Choice)
4.9/5
(29)

Find the exact value of the expression. - sin(11π12)\sin \left( - \frac { 11 \pi } { 12 } \right)

(Multiple Choice)
4.9/5
(38)

Solve the problem. - cos4x=10(3+4cos2x+cos4x)\cos ^ { 4 } x = \frac { 1 } { 0 } ( 3 + 4 \cos 2 x + \cos 4 x )

(Essay)
4.9/5
(43)

Find the exact value under the given conditions. - sinα=513,3π2<α<2π;tanβ=724,π2<β<π\sin \alpha = - \frac { 5 } { 13 } , \frac { 3 \pi } { 2 } < \alpha < 2 \pi ; \quad \tan \beta = - \frac { 7 } { 24 } , \frac { \pi } { 2 } < \beta < \pi \quad Find cos(α+β)\cos ( \alpha + \beta ) .

(Multiple Choice)
4.9/5
(34)

Complete the identity. - cos(tan1v)=?\cos \left( \tan ^ { - 1 } v \right) = ?

(Multiple Choice)
4.8/5
(41)

Solve the problem. -The path of a projectile fired at an inclination θ (in degrees) \theta \text { (in degrees) } to the horizontal with an initial velocity v0\mathrm { v } _ { 0 } is a parabola. The range R of the projectile, that is, the horizontal distance that the projectile travels, is found by using the formula R=v02 gsin(2θ)\mathrm { R } = \frac { \mathrm { v } _ { 0 } ^ { 2 } } { \mathrm {~g} } \sin ( 2 \theta ) where g is the acceleration due to gravity. Suppose the projectile is fired with an initial velocity of 400 feet per seconds and g = 32 feet per secondd2\operatorname { second } \mathrm { d } ^ { 2 } . What angle θ,0θ<90\theta , 0 ^ { \circ } \leq \theta < 90 ^ { \circ } would you select for the range to be 2500 feet? (There should be two values of θ\theta .)

(Short Answer)
4.8/5
(38)

Express the sum or difference as a product of sines and/or cosines. - cos(10θ)cos(4θ)\cos ( 10 \theta ) - \cos ( 4 \theta )

(Multiple Choice)
4.8/5
(33)

Find the exact value of the expression. Do not use a calculator. - sin[sin1(0.3)]\sin \left[ \sin ^ { - 1 } ( - 0.3 ) \right]

(Multiple Choice)
4.9/5
(46)

Use the information given about the angle θ, 0 ≤θ ≤ 2π, to find the exact value of the indicated trigonometric function. - sinθ=35,3π2<θ<2π\sin \theta = - \frac { 3 } { 5 } , \frac { 3 \pi } { 2 } < \theta < 2 \pi \quad Find sinθ2\sin \frac { \theta } { 2 } .

(Multiple Choice)
4.8/5
(32)

Find the exact value of the expression. - cos(sin114)\cos \left( \sin ^ { - 1 } \frac { 1 } { 4 } \right)

(Multiple Choice)
4.9/5
(37)

Complete the identity. - sec(α+β)sec(αβ)=?\sec ( \alpha + \beta ) \sec ( \alpha - \beta ) = ?

(Multiple Choice)
4.9/5
(38)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi - sin2θcos2θ=0\sin ^ { 2 } \theta - \cos ^ { 2 } \theta = 0

(Multiple Choice)
4.8/5
(36)

Express the sum or difference as a product of sines and/or cosines. - sin(2θ)sin(4θ)\sin ( 2 \theta ) - \sin ( 4 \theta )

(Multiple Choice)
4.9/5
(36)

Establish the identity. - csc4xcot4x=csc2x+cot2x\csc ^ { 4 } x - \cot ^ { 4 } x = \csc ^ { 2 } x + \cot ^ { 2 } x

(Essay)
4.7/5
(34)

Find the exact value of the expression.884:890 - sin[2cos1(35)]\sin \left[ 2 \cos ^ { - 1 } \left( - \frac { 3 } { 5 } \right) \right]

(Multiple Choice)
4.8/5
(42)

Use a calculator to solve the equation on the interval 0 0x<2π0 \leq x < 2 \pi . Round the answer to one decimal place if necessary. - x+3sinx=1x + 3 \sin x = 1

(Short Answer)
4.8/5
(41)

Solve the equation. Give a general formula for all the solutions. - cosθ1=0\cos \theta - 1 = 0

(Multiple Choice)
4.7/5
(39)
Showing 361 - 380 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)