Exam 6: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Complete the identity. - (sinθ+cosθ)21+2sinθcosθ= ? \frac { ( \sin \theta + \cos \theta ) ^ { 2 } } { 1 + 2 \sin \theta \cos \theta } = \text { ? }

(Multiple Choice)
4.9/5
(28)

Use the information given about the angle θ,0θ2π\theta , 0 \leq \theta \leq 2 \pi , to find the exact value of the indicated trigonometric function. - cosθ=55,0<θ<π2\cos \theta = \frac { \sqrt { 5 } } { 5 } , \quad 0 < \theta < \frac { \pi } { 2 } \quad Find sin(2θ)\sin ( 2 \theta )

(Multiple Choice)
4.8/5
(39)

Express the sum or difference as a product of sines and/or cosines. - cos(4θ)cos(6θ)\cos ( 4 \theta ) - \cos ( 6 \theta )

(Multiple Choice)
4.8/5
(30)

Complete the identity. - cos(α+β)cos(αβ)=\cos ( \alpha + \beta ) \cos ( \alpha - \beta ) = ?

(Multiple Choice)
4.8/5
(39)

Find the exact value of the expression. - sinπ12\sin \frac { \pi } { 12 }

(Multiple Choice)
4.8/5
(27)

Simplify the expression. - cos24xsin24x\cos ^ { 2 } 4 x - \sin ^ { 2 } 4 x

(Multiple Choice)
4.9/5
(34)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi - tan(2θ)tanθ=0\tan ( 2 \theta ) - \tan \theta = 0

(Multiple Choice)
4.7/5
(42)

Use the information given about the angle θ, 0 ≤θ ≤ 2π, to find the exact value of the indicated trigonometric function. - sinθ=14,tanθ>0\sin \theta = \frac { 1 } { 4 } , \quad \tan \theta > 0 \quad Find cosθ2\cos \frac { \theta } { 2 }

(Multiple Choice)
4.9/5
(36)

Find the exact value of the expression. - sin10cos50+cos10sin50\sin 10 ^ { \circ } \cos 50 ^ { \circ } + \cos 10 ^ { \circ } \sin 50 ^ { \circ }

(Multiple Choice)
4.8/5
(43)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi - cot(2θπ2)=1\cot \left( 2 \theta - \frac { \pi } { 2 } \right) = 1

(Multiple Choice)
4.7/5
(32)

Find the exact value of the expression. - tan10+tan201tan10tan20\frac { \tan 10 ^ { \circ } + \tan 20 ^ { \circ } } { 1 - \tan 10 ^ { \circ } \tan 20 ^ { \circ } }

(Multiple Choice)
4.8/5
(35)

Use a calculator to find the value of the expression rounded to two decimal places. - sin1(17)\sin ^ { - 1 } \left( - \frac { 1 } { 7 } \right)

(Multiple Choice)
4.9/5
(31)

Complete the identity. - csc(αβ)=?\csc ( \alpha - \beta ) = ?

(Multiple Choice)
5.0/5
(40)

Solve the problem. -The altitude of a projectile in feet (neglecting air resistance) is given by y=(tanθ)x16v2cos2θx2y = ( \tan \theta ) x - \frac { 16 } { v ^ { 2 } \cos ^ { 2 } \theta } x ^ { 2 } where x is the horizontal distance covered in feet and v is the initial velocity of the projectile at an angle θ from the horizontal. Find the firing angle (in degrees) of a projectile fired at an initial velocity of 100 feet per second so That it strikes the ground 312.5 feet from the firing point.

(Multiple Choice)
4.8/5
(30)

Establish the identity. - cot2xcscx1=1+sinxsinx\frac { \cot ^ { 2 } x } { \csc x - 1 } = \frac { 1 + \sin x } { \sin x }

(Essay)
4.9/5
(32)

Find the exact value of the expression. Do not use a calculator. - tan1[tan(π8)]\tan ^ { - 1 } \left[ \tan \left( - \frac { \pi } { 8 } \right) \right]

(Multiple Choice)
4.7/5
(38)

Complete the identity. - lncotx=?\ln | \cot x | = ?

(Multiple Choice)
4.7/5
(29)

Complete the identity. - csc(2θ)sec(2θ)(tanθ1)=\csc ( 2 \theta ) - \sec ( 2 \theta ) ( \tan \theta - 1 ) = ?

(Multiple Choice)
4.9/5
(46)

Solve the equation on the interval 0θ<2π0 \leq \theta < 2 \pi - csc(3θ)=0\csc ( 3 \theta ) = 0

(Multiple Choice)
4.7/5
(35)

Solve the problem. -Find cosθ2\cos \frac { \theta } { 2 } , given that cosθ=14\cos \theta = \frac { 1 } { 4 } and θ\theta terminates in 0<θ<π/20 < \theta < \pi / 2 .

(Multiple Choice)
4.8/5
(40)
Showing 141 - 160 of 402
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)