Exam 4: Exponential and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the domain of the composite function f fgf ^ { \circ } g - f(x)=x+8;g(x)=4x+6f ( x ) = x + 8 ; \quad g ( x ) = \frac { 4 } { x + 6 }

(Multiple Choice)
4.8/5
(30)

Solve the problem. -Determine the domain of the function f(x) f(x)=log5(x+2)f ( x ) = \log _ { 5 } ( x + 2 )

(Essay)
4.8/5
(32)

Solve the problem. -Gillian has $10,000 to invest in a mutual fund. The average annual rate of return for the past five years was 12.25%. Assuming this rate, determine how long it will take for her investment to double.

(Short Answer)
4.9/5
(27)

Write as the sum and/or difference of logarithms. Express powers as factors. - log12rs13\log _ { 12 } \sqrt { \frac { \mathrm { rs } } { 13 } }

(Multiple Choice)
4.8/5
(31)

Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x)=4(x1)f ( x ) = 4 ( x - 1 )  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f ( x ) = 4 ( x - 1 )     A) domain of  f : ( - \infty , \infty ) ; range of f:  ( 0 , \infty )  horizontal asymptote:  y = 0      B) domain of  f : ( - \infty , \infty ) ; range of  f : ( 0 , \infty )   horizontal asymptote:  \mathrm { y } = 0     C) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0)    horizontal asymptote:   y=0      D) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0   horizontal asymptote:   \mathrm{y}=0         A) domain of f:(,)f : ( - \infty , \infty ) ; range of f: (0,)( 0 , \infty ) horizontal asymptote: y=0y = 0  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f ( x ) = 4 ( x - 1 )     A) domain of  f : ( - \infty , \infty ) ; range of f:  ( 0 , \infty )  horizontal asymptote:  y = 0      B) domain of  f : ( - \infty , \infty ) ; range of  f : ( 0 , \infty )   horizontal asymptote:  \mathrm { y } = 0     C) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0)    horizontal asymptote:   y=0      D) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0   horizontal asymptote:   \mathrm{y}=0         B) domain of f:(,)f : ( - \infty , \infty ) ; range of f:(0,)f : ( 0 , \infty ) horizontal asymptote: y=0\mathrm { y } = 0  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f ( x ) = 4 ( x - 1 )     A) domain of  f : ( - \infty , \infty ) ; range of f:  ( 0 , \infty )  horizontal asymptote:  y = 0      B) domain of  f : ( - \infty , \infty ) ; range of  f : ( 0 , \infty )   horizontal asymptote:  \mathrm { y } = 0     C) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0)    horizontal asymptote:   y=0      D) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0   horizontal asymptote:   \mathrm{y}=0         C) domain of f:(,) \mathrm{f}:(-\infty, \infty) ; range of f:(,0) \mathrm{f}:(-\infty, 0) horizontal asymptote: y=0 y=0  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f ( x ) = 4 ( x - 1 )     A) domain of  f : ( - \infty , \infty ) ; range of f:  ( 0 , \infty )  horizontal asymptote:  y = 0      B) domain of  f : ( - \infty , \infty ) ; range of  f : ( 0 , \infty )   horizontal asymptote:  \mathrm { y } = 0     C) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0)    horizontal asymptote:   y=0      D) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0   horizontal asymptote:   \mathrm{y}=0         D) domain of f:(,) \mathrm{f}:(-\infty, \infty) ; range of f:(,0 \mathrm{f}:(-\infty, 0 horizontal asymptote: y=0 \mathrm{y}=0  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f ( x ) = 4 ( x - 1 )     A) domain of  f : ( - \infty , \infty ) ; range of f:  ( 0 , \infty )  horizontal asymptote:  y = 0      B) domain of  f : ( - \infty , \infty ) ; range of  f : ( 0 , \infty )   horizontal asymptote:  \mathrm { y } = 0     C) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0)    horizontal asymptote:   y=0      D) domain of   \mathrm{f}:(-\infty, \infty)  ; range of   \mathrm{f}:(-\infty, 0   horizontal asymptote:   \mathrm{y}=0

(Multiple Choice)
4.9/5
(38)

Find the exact value of the logarithmic expression. - log416\log _ { 4 } 16

(Multiple Choice)
4.8/5
(26)

Solve the equation. - log21(x+84)=3log21x\log _ { 21 } ( x + 84 ) = 3 - \log _ { 21 } x

(Multiple Choice)
4.7/5
(38)

Find the domain of the composite function f fgf ^ { \circ } g - f(x)=7x;g(x)=2x+1f ( x ) = \frac { - 7 } { x } ; \quad g ( x ) = \frac { - 2 } { x + 1 }

(Multiple Choice)
4.8/5
(37)

Decide whether or not the functions are inverses of each other. - f(x)=9x9,g(x)=19x+1f ( x ) = 9 x - 9 , g ( x ) = \frac { 1 } { 9 } x + 1

(Multiple Choice)
5.0/5
(38)

The Richter scale converts seismographic readings into numbers for measuring the magnitude of an earthquake according to this function M(x)=log(xx0), where x0=103M ( x ) = \log \left( \frac { x } { x _ { 0 } } \right) , \text { where } x _ { 0 } = 10 ^ { - 3 } -Two earthquakes differ by 0.1 when measured on the Richter scale. How would the seismographic readings differ at a distance of 100 kilometers from the epicenter?

(Essay)
5.0/5
(36)

Solve the equation. - 3(94x)=33^{ ( 9 - 4 x )} = 3

(Multiple Choice)
4.9/5
(32)

Use a graphing calculator to solve the equation. Round your answer to two decimal places. - log4x+log3x=3\log _ { 4 } x + \log _ { 3 } x = 3

(Multiple Choice)
4.9/5
(36)

Find the effective rate of interest. - 434%4 \frac { 3 } { 4 } \% compounded quarterly

(Short Answer)
4.9/5
(33)

Find the inverse. Determine whether the inverse represents a function. - {(6,5),(1,6),(3,7),(5,8)}\{ ( 6,5 ) , ( - 1,6 ) , ( - 3,7 ) , ( - 5,8 ) \}

(Multiple Choice)
4.9/5
(34)

Solve the problem. -Meike earned $1565 in tips while working a summer job at a coffee shop. She wants to use this money to take a trip to Europe next summer. If she places the money in an account which pays 6.5% compounded continuously, how much money will she have in nine months?

(Short Answer)
5.0/5
(37)

Solve the problem. -A fossilized leaf contains 18% of its normal amount of carbon 14. How old is the fossil (to the nearest year)? Use 5600 years as the half-life of carbon 14.

(Multiple Choice)
4.7/5
(39)

Change the exponential expression to an equivalent expression involving a logarithm. - ex=13\mathrm { e } ^ { \mathrm { x } } = 13

(Multiple Choice)
4.9/5
(28)

Find the exact value of the logarithmic expression. - ln1\ln 1

(Multiple Choice)
4.9/5
(27)

Use the Change-of-Base Formula and a calculator to evaluate the logarithm. Round your answer to two decimal places. - log5215.3\log _ { \sqrt { 5 } } 215.3

(Multiple Choice)
4.8/5
(36)

Solve the problem. -Which of the two rates would yield the larger amount in 1 year: 9%9 \% compounded monthly or 914%9 \frac { 1 } { 4 } \% compounded annually?

(Multiple Choice)
4.7/5
(35)
Showing 181 - 200 of 518
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)