Exam 4: Exponential and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -Suppose that f(x)=3x+1f ( x ) = 3 ^ { x } + 1 . If f(x)=1/244f ( x ) = 1 / 244 , what is xx ?

(Multiple Choice)
4.9/5
(39)

Solve the problem. -Cindy will require $12,000 in 5 years to return to college to get an MBA degree. How much money should she ask her parents for now so that, if she invests it at 11% compounded continuously, she will have enough for School? (Round your answer to the nearest dollar.)

(Multiple Choice)
4.9/5
(37)

Solve the problem. -How much money needs to be invested now to get $2000 after 4 years at 8% compounded quarterly? Express your answer to the nearest dollar.

(Multiple Choice)
4.8/5
(30)

Solve the problem. -An oil well off the Gulf Coast is leaking, with the leak spreading oil over the surface of the gulf as a circle. At any time t, in minutes, after the beginning of the leak, the radius of the oil slick on the surface is r(t) = 3t ft. Find The area A of the oil slick as a function of time. A) A(r(t))=9πt2\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 9 \pi \mathrm { t } ^ { 2 } B) A(r(t))=9t2A ( r ( t ) ) = 9 t ^ { 2 } C) A(r(t))=9πt\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 9 \pi \mathrm { t } D) A(r(t))=3πt2\mathrm { A } ( \mathrm { r } ( \mathrm { t } ) ) = 3 \pi \mathrm { t } ^ { 2 }

(Multiple Choice)
4.8/5
(34)

Change the logarithmic expression to an equivalent expression involving an exponent. - lny=8\ln y = 8

(Multiple Choice)
4.8/5
(36)

Change the logarithmic expression to an equivalent expression involving an exponent. - logb81=4\log _ { \mathrm { b } } 81 = 4

(Multiple Choice)
4.7/5
(28)

Solve the equation. - e6x1=(e4)xe ^ { 6 x - 1 } = \left( e ^ { 4 } \right) ^ { - x }

(Multiple Choice)
4.8/5
(37)

Find the present value. Round to the nearest cent. -To get $5600 after 8 years at 5% compounded annually

(Multiple Choice)
4.8/5
(30)

Determine i) the domain of the function, ii) the range of the function, iii) the domain of the inverse, and iv) the range of the inverse. - f(x)=5+4xf ( x ) = \sqrt { 5 + 4 x }

(Multiple Choice)
4.9/5
(28)

Solve the problem. -A venture capital firm invested $2,000,000 in a new company in 1995. In 1999, they sold their stake in the company for $10,500,000. What was the average annual rate of return on their investment?

(Short Answer)
4.8/5
(36)

Solve the given exponential equation. Round answer to three decimal places. - 52x+5(x+1)24=05 ^ { 2 x } + 5 ( x + 1 ) - 24 = 0

(Multiple Choice)
4.9/5
(38)

Find the amount that results from the investment. -$1,000 invested at 6% compounded annually after a period of 8 years

(Multiple Choice)
4.9/5
(40)

Graph the function. - f(x)=2x2f ( x ) = 2 ^ { - x } - 2  Graph the function. - f ( x ) = 2 ^ { - x } - 2     A)    B)    C)    D)    A)  Graph the function. - f ( x ) = 2 ^ { - x } - 2     A)    B)    C)    D)    B)  Graph the function. - f ( x ) = 2 ^ { - x } - 2     A)    B)    C)    D)    C)  Graph the function. - f ( x ) = 2 ^ { - x } - 2     A)    B)    C)    D)    D)  Graph the function. - f ( x ) = 2 ^ { - x } - 2     A)    B)    C)    D)

(Multiple Choice)
4.8/5
(29)

Solve the equation. - 2(7+3x)=142 ( 7 + 3 x ) = \frac { 1 } { 4 }

(Multiple Choice)
4.7/5
(21)

Solve the problem. -If 3x=153 ^ { - x } = \frac { 1 } { 5 } , what does 9x9 ^ { x } equal?

(Multiple Choice)
4.8/5
(37)

Use the Change-of-Base Formula and a calculator to evaluate the logarithm. Round your answer to three decimal places. - log4.42.6\log _ { 4.4 } 2.6

(Multiple Choice)
4.8/5
(31)

Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x)=2x+3+4f(x)=-2^{x+3}+4  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x)=-2^{x+3}+4     A) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , - 4 ) ; horizontal asymptote:  \mathrm { y } = - 4      B) domain of  \mathrm { f } : ( - \infty , \infty ) ; range of  \mathrm { f } : ( - \infty , - 4 ) ;  horizontal asymptote:  \mathrm { y } = - 4      C) domain of  \mathrm { f: } ( - \infty , \infty ) ; range of  \mathrm { f } : ( - 4 , \infty ) ; horizontal asymptote:  \mathrm { y } = 4      D) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , 4 ) ;  horizontal asymptote:  y = 4     A) domain of f:(,)f : ( - \infty , \infty ) ; range of f:(,4)f : ( - \infty , - 4 ) ; horizontal asymptote: y=4\mathrm { y } = - 4  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x)=-2^{x+3}+4     A) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , - 4 ) ; horizontal asymptote:  \mathrm { y } = - 4      B) domain of  \mathrm { f } : ( - \infty , \infty ) ; range of  \mathrm { f } : ( - \infty , - 4 ) ;  horizontal asymptote:  \mathrm { y } = - 4      C) domain of  \mathrm { f: } ( - \infty , \infty ) ; range of  \mathrm { f } : ( - 4 , \infty ) ; horizontal asymptote:  \mathrm { y } = 4      D) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , 4 ) ;  horizontal asymptote:  y = 4     B) domain of f:(,)\mathrm { f } : ( - \infty , \infty ) ; range of f:(,4)\mathrm { f } : ( - \infty , - 4 ) ; horizontal asymptote: y=4\mathrm { y } = - 4  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x)=-2^{x+3}+4     A) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , - 4 ) ; horizontal asymptote:  \mathrm { y } = - 4      B) domain of  \mathrm { f } : ( - \infty , \infty ) ; range of  \mathrm { f } : ( - \infty , - 4 ) ;  horizontal asymptote:  \mathrm { y } = - 4      C) domain of  \mathrm { f: } ( - \infty , \infty ) ; range of  \mathrm { f } : ( - 4 , \infty ) ; horizontal asymptote:  \mathrm { y } = 4      D) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , 4 ) ;  horizontal asymptote:  y = 4     C) domain of f:(,)\mathrm { f: } ( - \infty , \infty ) ; range of f:(4,)\mathrm { f } : ( - 4 , \infty ) ; horizontal asymptote: y=4\mathrm { y } = 4  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x)=-2^{x+3}+4     A) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , - 4 ) ; horizontal asymptote:  \mathrm { y } = - 4      B) domain of  \mathrm { f } : ( - \infty , \infty ) ; range of  \mathrm { f } : ( - \infty , - 4 ) ;  horizontal asymptote:  \mathrm { y } = - 4      C) domain of  \mathrm { f: } ( - \infty , \infty ) ; range of  \mathrm { f } : ( - 4 , \infty ) ; horizontal asymptote:  \mathrm { y } = 4      D) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , 4 ) ;  horizontal asymptote:  y = 4     D) domain of f:(,)f : ( - \infty , \infty ) ; range of f:(,4)f : ( - \infty , 4 ) ; horizontal asymptote: y=4y = 4  Use transformations to graph the function. Determine the domain, range, and horizontal asymptote of the function. - f(x)=-2^{x+3}+4     A) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , - 4 ) ; horizontal asymptote:  \mathrm { y } = - 4      B) domain of  \mathrm { f } : ( - \infty , \infty ) ; range of  \mathrm { f } : ( - \infty , - 4 ) ;  horizontal asymptote:  \mathrm { y } = - 4      C) domain of  \mathrm { f: } ( - \infty , \infty ) ; range of  \mathrm { f } : ( - 4 , \infty ) ; horizontal asymptote:  \mathrm { y } = 4      D) domain of  f : ( - \infty , \infty ) ; range of  f : ( - \infty , 4 ) ;  horizontal asymptote:  y = 4

(Multiple Choice)
4.8/5
(32)

The Richter scale converts seismographic readings into numbers for measuring the magnitude of an earthquake according to this function M(x)=log(xx0), where x0=103M ( x ) = \log \left( \frac { x } { x _ { 0 } } \right) , \text { where } x _ { 0 } = 10 ^ { - 3 } -What is the magnitude of an earthquake whose seismographic reading is 6.6 millimeters at a distance of 100 kilometers from its epicenter? Round the answer to the nearest tenth.

(Multiple Choice)
4.9/5
(30)

Find the domain of the composite function f fgf ^ { \circ } g - f(x)=2x+7;g(x)=14xf ( x ) = \frac { - 2 } { x + 7 } ; \quad g ( x ) = \frac { - 14 } { x }

(Multiple Choice)
4.8/5
(29)

Find the domain of the function. - f(x)=log4(x9)2f ( x ) = \log _ { 4 } ( x - 9 ) ^ { 2 }

(Multiple Choice)
4.9/5
(26)
Showing 61 - 80 of 518
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)