Exam 4: Exponential and Logarithmic Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find functions f and g so that f fg=Hf \circ g = H - H(x)=1x25H ( x ) = \frac { 1 } { x ^ { 2 } - 5 }

(Multiple Choice)
4.9/5
(43)

Graph the function. - f(x)=(13)x\mathrm { f } ( \mathrm { x } ) = \left( \frac { 1 } { 3 } \right) ^ { \mathrm { x } }  Graph the function. - \mathrm { f } ( \mathrm { x } ) = \left( \frac { 1 } { 3 } \right) ^ { \mathrm { x } }     A)    B)    C)    D)    A)  Graph the function. - \mathrm { f } ( \mathrm { x } ) = \left( \frac { 1 } { 3 } \right) ^ { \mathrm { x } }     A)    B)    C)    D)    B)  Graph the function. - \mathrm { f } ( \mathrm { x } ) = \left( \frac { 1 } { 3 } \right) ^ { \mathrm { x } }     A)    B)    C)    D)    C)  Graph the function. - \mathrm { f } ( \mathrm { x } ) = \left( \frac { 1 } { 3 } \right) ^ { \mathrm { x } }     A)    B)    C)    D)    D)  Graph the function. - \mathrm { f } ( \mathrm { x } ) = \left( \frac { 1 } { 3 } \right) ^ { \mathrm { x } }     A)    B)    C)    D)

(Multiple Choice)
4.9/5
(28)

Use the horizontal line test to determine whether the function is one-to-one. -Use the horizontal line test to determine whether the function is one-to-one. -

(Multiple Choice)
4.8/5
(33)

Solve the problem. -The population P of a predator mammal depends upon the number x of a smaller animal that is its primary food source. The population s of the smaller animal depends upon the amount a of a certain plant that is its Primary food source. If P(x)=3x2+2P ( x ) = 3 x ^ { 2 } + 2 and s(a) = 2a + 5, what is the relationship between the predator mammal And the plant food source? A) P(s(a))=4a2+20a+27\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 4 \mathrm { a } ^ { 2 } + 20 \mathrm { a } + 27 B) P(s(a))=6a+7\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 6 \mathrm { a } + 7 C) P(s(a))=12a2+30a+77P ( s ( a ) ) = 12 a ^ { 2 } + 30 a + 77 D) P(s(a))=12a2+60a+77\mathrm { P } ( \mathrm { s } ( \mathrm { a } ) ) = 12 \mathrm { a } ^ { 2 } + 60 \mathrm { a } + 77

(Multiple Choice)
4.8/5
(35)

Solve the problem. -The formula D D=8e0.04h\mathrm { D } = 8 \mathrm { e } ^ { - 0.04 h } can be used to find the number of milligrams D of a certain drug in a patient's bloodstream h hours after the drug has been given. When the number of milligrams reaches 4, the drug is to be Given again. What is the time between injections?

(Multiple Choice)
4.9/5
(34)

Solve the problem. -John Forgetsalot deposited $100 at a 3% annual interest rate in a savings account fifty years ago, and then he promptly forgot he had done it. Recently, he was cleaning out his home office and discovered the forgotten bank book. How much money is in the account?

(Short Answer)
4.8/5
(33)

Use the properties of logarithms to find the exact value of the expression. Do not use a calculator. - 2lne4.22 \ln \mathrm { e } ^ { 4.2 }

(Multiple Choice)
4.9/5
(33)

Choose the one alternative that best completes the statement or answers the question. Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. - ex+4=7e ^ { x + 4 } = 7

(Multiple Choice)
4.8/5
(36)

For the given functions f and g, find the requested composite function value. - f(t)=t4+18t2+81,g(t)=t+33; Find (fg)(9)f ( t ) = \sqrt { t 4 + 18 t ^ { 2 } + 81 } , \quad g ( t ) = \frac { t + 3 } { 3 } ; \quad \text { Find } ( f \circ g ) ( 9 )

(Multiple Choice)
4.8/5
(37)

The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve. - f(x)=4xf ( x ) = \frac { 4 } { x }  The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve. - f ( x ) = \frac { 4 } { x }     A) Function is its own inverse    B)     A) Function is its own inverse  The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve. - f ( x ) = \frac { 4 } { x }     A) Function is its own inverse    B)     B)  The graph of a one-to-one function f is given. Draw the graph of the inverse function f-1 as a dashed line or curve. - f ( x ) = \frac { 4 } { x }     A) Function is its own inverse    B)

(Multiple Choice)
4.9/5
(39)

Solve the problem. -A biologist has a bacteria sample. She records the amount of bacteria every week for 8 weeks and finds that the exponential function of best fit to the data i A=1501.79t\mathrm { A } = 150 \cdot 1.79 \mathrm { t } . Express the function of best fit in the form A=A0ektA = A_{ 0}e ^ { k t }

(Essay)
4.9/5
(47)

Use the Change-of-Base Formula and a calculator to evaluate the logarithm. Round your answer to two decimal places. - log325\log _ { 3 } 25

(Multiple Choice)
4.9/5
(32)

The function f is one-to-one. Find its inverse. - f(x)=47x5f ( x ) = \frac { 4 } { 7 x - 5 }

(Multiple Choice)
4.8/5
(40)

For the given functions f and g, find the requested composite function value. - f(x)=x6x,g(x)=x2+9;f ( x ) = \frac { x - 6 } { x } , g ( x ) = x ^ { 2 } + 9 ; \quad Find (gf)(2)( g \circ f ) ( - 2 )

(Multiple Choice)
4.9/5
(35)

Decide whether the composite functions, f fgf \circ g nd gf\mathbf { g } \circ \mathrm { f } f, are equal to x. - f(x)=2x,g(x)=x2f ( x ) = 2 x , \quad g ( x ) = \frac { x } { 2 }

(Multiple Choice)
4.8/5
(34)

Find the value of the expression. -Let logbA=2.087\log _ { \mathrm { b } } \mathrm { A } = 2.087 and logbB=0.188\log _ { \mathrm { b } } \mathrm { B } = 0.188 . Find logbAB\log _ { \mathrm { b } } \mathrm { AB } .

(Multiple Choice)
4.7/5
(38)

Solve the problem. -The size P of a small herbivore population at time t (in years) obeys the function P(t)=800e0.24t\mathrm { P } ( \mathrm { t } ) = 800 \mathrm { e } ^ { 0.24 \mathrm { t } } if they have enough food and the predator population stays constant. After how many years will the population reach 1,600?

(Multiple Choice)
4.8/5
(33)

Use transformations to graph the function. -  Use the graph of log4x to obtain the graph of f(x)=13log4x\text { Use the graph of } \log _ { 4 } x \text { to obtain the graph of } f ( x ) = - \frac { 1 } { 3 } \log _ { 4 } x \text {. }  Use transformations to graph the function. - \text { Use the graph of } \log _ { 4 } x \text { to obtain the graph of } f ( x ) = - \frac { 1 } { 3 } \log _ { 4 } x \text {. }     A)   B)   C)   D)    A)  Use transformations to graph the function. - \text { Use the graph of } \log _ { 4 } x \text { to obtain the graph of } f ( x ) = - \frac { 1 } { 3 } \log _ { 4 } x \text {. }     A)   B)   C)   D)    B)  Use transformations to graph the function. - \text { Use the graph of } \log _ { 4 } x \text { to obtain the graph of } f ( x ) = - \frac { 1 } { 3 } \log _ { 4 } x \text {. }     A)   B)   C)   D)    C)  Use transformations to graph the function. - \text { Use the graph of } \log _ { 4 } x \text { to obtain the graph of } f ( x ) = - \frac { 1 } { 3 } \log _ { 4 } x \text {. }     A)   B)   C)   D)    D)  Use transformations to graph the function. - \text { Use the graph of } \log _ { 4 } x \text { to obtain the graph of } f ( x ) = - \frac { 1 } { 3 } \log _ { 4 } x \text {. }     A)   B)   C)   D)

(Multiple Choice)
5.0/5
(37)

Decide whether or not the functions are inverses of each other. - f(x)=1x+6,g(x)=6x+1xf ( x ) = \frac { 1 } { x + 6 } , g ( x ) = \frac { 6 x + 1 } { x }

(Multiple Choice)
4.8/5
(37)

Solve the equation. Express irrational answers in exact form and as a decimal rounded to 3 decimal places. - (12)x=71x\left( \frac { 1 } { 2 } \right) ^ { x } = 7 ^ { 1 - x }

(Multiple Choice)
4.8/5
(30)
Showing 301 - 320 of 518
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)