Exam 2: Linear and Quadratic Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Determine the slope and y-intercept of the function. - f(x)=14x3f ( x ) = \frac { 1 } { 4 } x - 3

(Multiple Choice)
4.9/5
(33)

Determine the domain and the range of the function. - f(x)=x2+2xf ( x ) = - x ^ { 2 } + 2 x

(Multiple Choice)
4.8/5
(26)

Find the complex zeros of the quadratic function. - G(x)=x2+100G ( x ) = x ^ { 2 } + 100

(Multiple Choice)
4.8/5
(42)

Solve the inequality. - 4x215<17x4 x ^ { 2 } - 15 < - 17 x

(Multiple Choice)
4.9/5
(28)

Solve the inequality. - x2+4x0x ^ { 2 } + 4 x \geq 0

(Multiple Choice)
4.8/5
(37)

Solve the inequality. - x225>0x ^ { 2 } - 25 > 0

(Multiple Choice)
4.8/5
(34)

Solve the problem. -The owner of a video store has determined that the profits P of the store are approximately given by P(x)=x2+150x+54P ( x ) = - x ^ { 2 } + 150 x + 54 , where x is the number of videos rented daily. Find the maximum profit to the nearest dollar.

(Multiple Choice)
4.8/5
(38)

Find the vertex and axis of symmetry of the graph of the function. - f(x)=x2+2x3f ( x ) = x ^ { 2 } + 2 x - 3

(Multiple Choice)
4.7/5
(42)

Solve the inequality. Express your answer using interval notation. Graph the solution set. - 8k+12| 8 k + 1 | \geq 2  Solve the inequality. Express your answer using interval notation. Graph the solution set. - | 8 k + 1 | \geq 2

(Multiple Choice)
4.7/5
(32)

Solve the inequality. - x2+6x0x ^ { 2 } + 6 x \leq 0

(Multiple Choice)
4.9/5
(33)

Solve the equation. - 6x=3| 6 x | = 3

(Multiple Choice)
4.7/5
(35)

Solve the problem. -A coin is tossed upward from a balcony 300ft300 \mathrm { ft } high with an initial velocity of 32ft/sec32 \mathrm { ft } / \mathrm { sec } . During what interval of time will the coin be at a height of at least 60ft60 \mathrm { ft } ? (h=16t2+vOt+hO\left( h = - 16 \mathrm { t } ^ { 2 } + \mathrm { v } _ { \mathrm { O } } \mathrm { t } + \mathrm { h } _ { \mathrm { O } } \right. .)

(Multiple Choice)
4.9/5
(47)

Plot a scatter diagram. - 15 21 36 46 58 70 71 84 95 10 23 42 45 68 55 63 96 85  Plot a scatter diagram. - \begin{array}{l|lllllllll} \mathrm{x} & 15 & 21 & 36 & 46 & 58 & 70 & 71 & 84 & 95 \\ \hline \mathrm{y} & 10 & 23 & 42 & 45 & 68 & 55 & 63 & 96 & 85 \end{array}      A)    B)    C)    D)     A)  Plot a scatter diagram. - \begin{array}{l|lllllllll} \mathrm{x} & 15 & 21 & 36 & 46 & 58 & 70 & 71 & 84 & 95 \\ \hline \mathrm{y} & 10 & 23 & 42 & 45 & 68 & 55 & 63 & 96 & 85 \end{array}      A)    B)    C)    D)     B)  Plot a scatter diagram. - \begin{array}{l|lllllllll} \mathrm{x} & 15 & 21 & 36 & 46 & 58 & 70 & 71 & 84 & 95 \\ \hline \mathrm{y} & 10 & 23 & 42 & 45 & 68 & 55 & 63 & 96 & 85 \end{array}      A)    B)    C)    D)     C)  Plot a scatter diagram. - \begin{array}{l|lllllllll} \mathrm{x} & 15 & 21 & 36 & 46 & 58 & 70 & 71 & 84 & 95 \\ \hline \mathrm{y} & 10 & 23 & 42 & 45 & 68 & 55 & 63 & 96 & 85 \end{array}      A)    B)    C)    D)     D)  Plot a scatter diagram. - \begin{array}{l|lllllllll} \mathrm{x} & 15 & 21 & 36 & 46 & 58 & 70 & 71 & 84 & 95 \\ \hline \mathrm{y} & 10 & 23 & 42 & 45 & 68 & 55 & 63 & 96 & 85 \end{array}      A)    B)    C)    D)

(Multiple Choice)
4.9/5
(29)

Solve the problem. -A coin is tossed upward from a balcony 390ft390 \mathrm { ft } high with an initial velocity of 16ft/sec16 \mathrm { ft } / \mathrm { sec } . During what interval of time will the coin be at a height of at least 70ft70 \mathrm { ft } ? (h=16t2+vOt+hO)\left( h = - 16 t ^ { 2 } + v _ { O ^ { - } } t + h _ { O ^ { - } } \right)

(Multiple Choice)
4.8/5
(37)

Graph the function f by starting with the graph of y y=x2y = x ^ { 2 } and using transformations (shifting, compressing, stretching, and/or reflection). - f(x)=12x2f ( x ) = \frac { 1 } { 2 } x ^ { 2 }  Graph the function f by starting with the graph of y  y = x ^ { 2 }  and using transformations (shifting, compressing, stretching, and/or reflection). - f ( x ) = \frac { 1 } { 2 } x ^ { 2 }     A)   B)   C)   D)    A)  Graph the function f by starting with the graph of y  y = x ^ { 2 }  and using transformations (shifting, compressing, stretching, and/or reflection). - f ( x ) = \frac { 1 } { 2 } x ^ { 2 }     A)   B)   C)   D)    B)  Graph the function f by starting with the graph of y  y = x ^ { 2 }  and using transformations (shifting, compressing, stretching, and/or reflection). - f ( x ) = \frac { 1 } { 2 } x ^ { 2 }     A)   B)   C)   D)    C)  Graph the function f by starting with the graph of y  y = x ^ { 2 }  and using transformations (shifting, compressing, stretching, and/or reflection). - f ( x ) = \frac { 1 } { 2 } x ^ { 2 }     A)   B)   C)   D)    D)  Graph the function f by starting with the graph of y  y = x ^ { 2 }  and using transformations (shifting, compressing, stretching, and/or reflection). - f ( x ) = \frac { 1 } { 2 } x ^ { 2 }     A)   B)   C)   D)

(Multiple Choice)
4.8/5
(44)

Determine where the function is increasing and where it is decreasing. - f(x)=x22x+8f ( x ) = - x ^ { 2 } - 2 x + 8

(Multiple Choice)
4.8/5
(38)

Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=x2+6xf(x)=-x^{2}+6 x  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=-x^{2}+6 x     A)  \begin{array}{l} \text { vertex }(3,-9) \\ \text { intercept }(0,-18) \end{array}     B) \begin{array}{l} \text { vertex }(3,9) \\ \text { intercepts }(0,0),(6,0) \end{array}      C) vertex  ( - 3,9 )  intercepts  ( 0,0 ) , ( - 6,0 )     D) vertex  ( - 3 , - 9 )  intercept  ( 0 , - 18 )     A) vertex (3,-9) intercept (0,-18)  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=-x^{2}+6 x     A)  \begin{array}{l} \text { vertex }(3,-9) \\ \text { intercept }(0,-18) \end{array}     B) \begin{array}{l} \text { vertex }(3,9) \\ \text { intercepts }(0,0),(6,0) \end{array}      C) vertex  ( - 3,9 )  intercepts  ( 0,0 ) , ( - 6,0 )     D) vertex  ( - 3 , - 9 )  intercept  ( 0 , - 18 )     B) vertex (3,9) intercepts (0,0),(6,0)  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=-x^{2}+6 x     A)  \begin{array}{l} \text { vertex }(3,-9) \\ \text { intercept }(0,-18) \end{array}     B) \begin{array}{l} \text { vertex }(3,9) \\ \text { intercepts }(0,0),(6,0) \end{array}      C) vertex  ( - 3,9 )  intercepts  ( 0,0 ) , ( - 6,0 )     D) vertex  ( - 3 , - 9 )  intercept  ( 0 , - 18 )     C) vertex (3,9)( - 3,9 ) intercepts (0,0),(6,0)( 0,0 ) , ( - 6,0 )  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=-x^{2}+6 x     A)  \begin{array}{l} \text { vertex }(3,-9) \\ \text { intercept }(0,-18) \end{array}     B) \begin{array}{l} \text { vertex }(3,9) \\ \text { intercepts }(0,0),(6,0) \end{array}      C) vertex  ( - 3,9 )  intercepts  ( 0,0 ) , ( - 6,0 )     D) vertex  ( - 3 , - 9 )  intercept  ( 0 , - 18 )     D) vertex (3,9)( - 3 , - 9 ) intercept (0,18)( 0 , - 18 )  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=-x^{2}+6 x     A)  \begin{array}{l} \text { vertex }(3,-9) \\ \text { intercept }(0,-18) \end{array}     B) \begin{array}{l} \text { vertex }(3,9) \\ \text { intercepts }(0,0),(6,0) \end{array}      C) vertex  ( - 3,9 )  intercepts  ( 0,0 ) , ( - 6,0 )     D) vertex  ( - 3 , - 9 )  intercept  ( 0 , - 18 )

(Multiple Choice)
4.7/5
(36)

Use a graphing utility to find the equation of the line of best fit. Round to two decimal places, if necessary. - 2 3 7 8 10 3 4 4 5 6

(Multiple Choice)
4.9/5
(48)

Solve the inequality. Express your answer using interval notation. Graph the solution set. - x>2| x | > 2  Solve the inequality. Express your answer using interval notation. Graph the solution set. - | x | > 2

(Multiple Choice)
4.8/5
(35)

Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=x22x8f(x)=x^{2}-2 x-8  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=x^{2}-2 x-8     A) vertex  ( 1 , - 9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )     B) vertex  ( 1,9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0,8 )     C) vertex  ( - 1,9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0,8 )     D) vertex  ( - 1 , - 9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0 , - 8 )     A) vertex (1,9)( 1 , - 9 ) intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=x^{2}-2 x-8     A) vertex  ( 1 , - 9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )     B) vertex  ( 1,9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0,8 )     C) vertex  ( - 1,9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0,8 )     D) vertex  ( - 1 , - 9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0 , - 8 )     B) vertex (1,9)( 1,9 ) intercepts (4,0),(2,0),(0,8)( 4,0 ) , ( - 2,0 ) , ( 0,8 )  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=x^{2}-2 x-8     A) vertex  ( 1 , - 9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )     B) vertex  ( 1,9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0,8 )     C) vertex  ( - 1,9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0,8 )     D) vertex  ( - 1 , - 9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0 , - 8 )     C) vertex (1,9)( - 1,9 ) intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( 2,0 ) , ( 0,8 )  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=x^{2}-2 x-8     A) vertex  ( 1 , - 9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )     B) vertex  ( 1,9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0,8 )     C) vertex  ( - 1,9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0,8 )     D) vertex  ( - 1 , - 9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0 , - 8 )     D) vertex (1,9)( - 1 , - 9 ) intercepts (4,0),(2,0),(0,8)( - 4,0 ) , ( 2,0 ) , ( 0 , - 8 )  Graph the function using its vertex, axis of symmetry, and intercepts. - f(x)=x^{2}-2 x-8     A) vertex  ( 1 , - 9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0 , - 8 )     B) vertex  ( 1,9 )  intercepts  ( 4,0 ) , ( - 2,0 ) , ( 0,8 )     C) vertex  ( - 1,9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0,8 )     D) vertex  ( - 1 , - 9 )  intercepts  ( - 4,0 ) , ( 2,0 ) , ( 0 , - 8 )

(Multiple Choice)
4.9/5
(33)
Showing 81 - 100 of 301
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)