Exam 1: A: the Foundations: Logic and Proofs
Exam 1: The Foundations: Logic and Proofs18 Questions
Exam 1: A: the Foundations: Logic and Proofs201 Questions
Exam 2: Basic Structures: Sets, Functions, Sequences, Sums, Matrices5 Questions
Exam 2: A: Basic Structures: Sets, Functions, Sequences, Sums, Matrices210 Questions
Exam 3: Algorithms8 Questions
Exam 3: A: Algorithms54 Questions
Exam 4: Number Theory and Cryptography10 Questions
Exam 4: A: Number Theory and Cryptography149 Questions
Exam 5: Induction and Recursion10 Questions
Exam 5: A: Induction and Recursion51 Questions
Exam 6: Counting14 Questions
Exam 6: A: Counting155 Questions
Exam 7: Discrete Probability9 Questions
Exam 7: A: Discrete Probability50 Questions
Exam 8: Advanced Counting Techniques16 Questions
Exam 8: A: Advanced Counting Techniques124 Questions
Exam 9: Relations13 Questions
Exam 9: A: Relations72 Questions
Exam 10: Graphs14 Questions
Exam 10: A: Graphs131 Questions
Exam 11: Trees13 Questions
Exam 11: A: Trees94 Questions
Exam 12: Boolean Algebra11 Questions
Exam 12: A: Boolean Algebra67 Questions
Exam 13: Modeling Computation14 Questions
Exam 13: A: Modeling Computation67 Questions
Exam 14: Mathematics Problem Set: Set Theory, Number Theory, Combinatorics, and Boolean Algebra29 Questions
Select questions type
suppose the variable x represents students, y represents courses, and T(x, y) means "x is taking y." Match the English statement with all its equivalent symbolic statements in this list: 1. \existsx\forallyT(x,y) 2. \existsy\forallxT(x,y) 3. \forallx\existsyT(x,y) 4. \neg\existsx\existsyT(x,y) 5. \existsx\forally\negT(x,y) 6. \forally\existsxT(x,y) 7. \existsy\forallx\negT(x,y) 8. \neg\forallx\existsyT(x,y) 9. \neg\existsy\forallxT(x,y) 10. \neg\forallx\existsy\negT(x,y) 11. \neg\forallx\neg\forally\negT(x,y) 12. \forallx\existsy\negT(x,y)
-Every course is being taken by at least one student.
(Short Answer)
4.8/5
(34)
Showing 201 - 201 of 201
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)