Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use Green's Theorem to find the work done by the force F(x,y)=(6x7y2)i+3yj\mathbf { F } ( x , y ) = \left( 6 x - 7 y ^ { 2 } \right) \mathbf { i } + 3 y \mathbf { j } in moving a particle in the positive direction once around the triangle with vertices (0,0),(1,0)( 0,0 ) , ( 1,0 ) , and (0,1)( 0,1 ) .

(Multiple Choice)
4.8/5
(43)

Let DD be a region bounded by a simple closed path CC in the xyx y . Then the coordinates of the centroid (xˉ,yˉ)( \bar { x } , \bar { y } ) of DD are xˉ=12ACx2dy,yˉ=12ACy2dx\bar { x } = \frac { 1 } { 2 A } \oint _ { C } x ^ { 2 } d y , \bar { y } = - \frac { 1 } { 2 A } \oint _ { C } y ^ { 2 } d x where AA is the area of DD . Find the centroid of the triangle with vertices (0,0),(8,0)( 0,0 ) , ( 8,0 ) and (0,16)( 0,16 ) .

(Short Answer)
4.8/5
(33)

Let DD be a region bounded by a simple closed path CC in the xyx y . Then the coordinates of the centroid (xˉ,yˉ)( \bar { x } , \bar { y } ) of DD are xˉ=12ACx2dy,yˉ=12ACy2dx\bar { x } = \frac { 1 } { 2 A } \oint _ { C } x ^ { 2 } d y , \bar { y } = - \frac { 1 } { 2 A } \oint _ { C } y ^ { 2 } d x where AA is the area of DD . Find the centroid of the triangle with vertices (0,0),(5,0)( 0,0 ) , ( 5,0 ) and (0,10)( 0,10 ) .

(Multiple Choice)
4.9/5
(38)

Find a function ff such that F=f\mathbf { F } = \nabla f , and use it to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } along the given curve CC . (x,y)=+ C:(t)=+ 1+ ,0\leqt\leq1

(Short Answer)
4.8/5
(40)

Find the work done by the force field F\mathbf { F } on a particle that moves along the curve CC . Select the correct answer. F(x,y)=(3x+5y)i+3xyj;C:r(t)=2t2i+t2j,0t1\mathbf { F } ( x , y ) = ( 3 x + 5 y ) \mathbf { i } + 3 x y \mathbf { j } ; \quad C : \mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } + t ^ { 2 } \mathbf { j } , 0 \leq t \leq 1

(Multiple Choice)
4.7/5
(29)

Use Green's Theorem to evaluate the line integral along the positively oriented closed curve CC . C5xydx+4x2dy\oint _ { C } 5 x y d x + 4 x ^ { 2 } d y , where CC is the triangle with vertices (0,0),(5,4)( 0,0 ) , ( 5,4 ) , and (0,4)( 0,4 ) .

(Short Answer)
4.9/5
(37)

Suppose that f(x,y,z)=g(x2+y2+z2)f ( x , y , z ) = g \left( \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \right) where gg is a function of one variable such that g(6)=2g ( 6 ) = 2 . Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S where SS is the sphere x2+y2+z2=36x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 36

(Multiple Choice)
4.8/5
(26)

Find the correct identity, if ff is a scalar field, F\mathbf { F } and G\mathbf { G } are vector fields.

(Multiple Choice)
4.8/5
(38)

Find the exact mass of a thin wire in the shape of the helix x=2sin(t),y=2cos(t),z=5t,0t2πx = 2 \sin ( t ) , y = 2 \cos ( t ) , z = 5 t , 0 \leq t \leq 2 \pi if the density is 5 . Select the correct answer.

(Multiple Choice)
4.9/5
(34)

Find the exact mass of a thin wire in the shape of the helix x=2sin(t),y=2cos(t),z=3t,0t2πx = 2 \sin ( t ) , y = 2 \cos ( t ) , z = 3 t , 0 \leq t \leq 2 \pi if the density is 5 .

(Multiple Choice)
4.7/5
(32)

Determine whether F\mathbf { F } is conservative. If so, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y)=(6x24x3y)e2xyi4x4e2xyj\mathbf { F } ( x , y ) = \left( 6 x ^ { 2 } - 4 x ^ { 3 } y \right) e ^ { - 2 x y } \mathbf { i } - 4 x ^ { 4 } e ^ { - 2 x y } \mathbf { j }

(Short Answer)
4.9/5
(43)

A plane lamina with constant density ρ(x,y)=12\rho ( x , y ) = 12 occupies a region in the xyx y -plane bounded by a simple closed path CC . Its moments of inertia about the axes are Ix=ρ3Cy3dx and ly=ρ3Cx3dyI _ { x } = - \frac { \rho } { 3 } \int _ { C } y ^ { 3 } d x \text { and } l _ { y } = \frac { \rho } { 3 } \int _ { C } x ^ { 3 } d y \text {. } Find the moments of inertia about the axes, if CC is a rectangle with vertices (0,0),(4,0)( 0,0 ) , ( 4,0 ) , (4,5)( 4,5 ) and (0,5)( 0,5 ) . Select the correct answer.

(Multiple Choice)
5.0/5
(43)

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S . f(x,y,z)=2x+2y+5z;Sf ( x , y , z ) = 2 x + 2 y + 5 z ; S is the part of the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } between the planes z=1z = 1 and z=2z = 2 .

(Multiple Choice)
4.8/5
(38)

Evaluate the line integral over the given curve CC . C2y2zds;C:r(t)=10ti+sin7tj+cos7tk,0tπ2\int _ { C } 2 y ^ { 2 } z d s ; C : \mathbf { r } ( t ) = 10 t \mathbf { i } + \sin 7 t \mathbf { j } + \cos 7 t \mathbf { k } , 0 \leq t \leq \frac { \pi } { 2 }

(Short Answer)
4.7/5
(43)

Suppose that f(x,y,z)=g(x2+y2+z2)f ( x , y , z ) = g \left( \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } \right) where gg is a function of one variable such that g(3)=4g ( 3 ) = 4 Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S where SS is the sphere x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 . Select the correct answer.

(Multiple Choice)
4.9/5
(38)

Evaluate the surface integral. S8xzdS\iint _ { S } 8 x z d S SS is the part of the plane 2x+2y+z=42 x + 2 y + z = 4 that lies in the first octant. Select the correct answer.

(Multiple Choice)
4.9/5
(35)

Find the curl of the vector field. F(x,y,z)=8exsin(y)i+4excos(y)j+3zk\mathbf { F } ( x , y , z ) = 8 e ^ { x } \sin ( y ) \mathbf { i } + 4 e ^ { x } \cos ( y ) \mathbf { j } + 3 z \mathbf { k }

(Short Answer)
4.8/5
(37)

Show that F\mathbf { F } is conservative and find a function ff such that F=f\mathbf { F } = \nabla f , and use this result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any path from A(x0,y0)A \left( x _ { 0 } , y _ { 0 } \right) to B(x1,y1)B \left( x _ { 1 } , y _ { 1 } \right) . F(x,y)=(15x2y214xy4)i+(10x3y28x2y3)j;A(1,2)\mathbf { F } ( x , y ) = \left( 15 x ^ { 2 } y ^ { 2 } - 14 x y ^ { 4 } \right) \mathbf { i } + \left( 10 x ^ { 3 } y - 28 x ^ { 2 } y ^ { 3 } \right) \mathbf { j } ; A ( 1 , - 2 ) and B(1,1)B ( 1 , - 1 )

(Multiple Choice)
4.8/5
(35)

Find the work done by the force field F(x,y)=30xi+15(2y+1)j\mathbf { F } ( x , y ) = 30 x \mathbf { i } + 15 ( 2 y + 1 ) \mathbf { j } in moving an object along an arch of the cycloid r(t)=(tsin(t))i+(1cos(t))j,0t2π\mathbf { r } ( t ) = ( t - \sin ( t ) ) \mathbf { i } + ( 1 - \cos ( t ) ) \mathbf { j } , 0 \leq t \leq 2 \pi

(Short Answer)
4.8/5
(38)

Find (a) the divergence and (b) the curl of the vector field F\mathbf { F } . F(x,y,z)=coszi+3ysin3zj+6x3zk\mathbf { F } ( x , y , z ) = \cos z \mathbf { i } + 3 y \sin 3 z \mathbf { j } + 6 x ^ { 3 } z \mathbf { k }

(Short Answer)
4.9/5
(32)
Showing 101 - 120 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)