Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Show that F\mathbf { F } is conservative and find a function ff such that F=f\mathbf { F } = \nabla f , and use this result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any path from A(x0,y0)A \left( x _ { 0 } , y _ { 0 } \right) to B(x1,y1)B \left( x _ { 1 } , y _ { 1 } \right) . F(x,y)=(15x2y214xy4)i+(10x3y28x2y3)j;A(1,2) and B(1,1)\mathbf { F } ( x , y ) = \left( 15 x ^ { 2 } y ^ { 2 } - 14 x y ^ { 4 } \right) \mathbf { i } + \left( 10 x ^ { 3 } y - 28 x ^ { 2 } y ^ { 3 } \right) \mathbf { j } ; A ( 1 , - 2 ) \text { and } B ( 1 , - 1 )

(Short Answer)
4.8/5
(50)

Find the exact mass of a thin wire in the shape of the helix x=2sin(t),y=2cos(t),z=7t,0t2πx = 2 \sin ( t ) , y = 2 \cos ( t ) , z = 7 t , 0 \leq t \leq 2 \pi if the density is 4 .

(Short Answer)
4.9/5
(37)

Use Green's Theorem to find the work done by the force F(x,y)=x(x+3y)i+3xy2j\mathbf { F } ( x , y ) = x ( x + 3 y ) \mathbf { i } + 3 x y ^ { 2 } \mathbf { j } in moving a particle from the origin along the xx -axis to (1,0)( 1,0 ) then along the line segment to (0,1)( 0,1 ) and then back to the origin along the yy -axis.

(Short Answer)
4.7/5
(38)

A thin wire is bent into the shape of a semicircle x2+y2=4,x>0x ^ { 2 } + y ^ { 2 } = 4 , x > 0 . If the linear density is 3 , find the exact mass of the wire. Select the correct answer.

(Multiple Choice)
4.7/5
(34)

Use a computer algebra system to compute the flux of F\mathbf { F } across SS . SS is the surface of the cube cut from the first octant by the planes x=π2,y=π2,z=π2x = \frac { \pi } { 2 } , y = \frac { \pi } { 2 } , z = \frac { \pi } { 2 } F(x,y,z)=5sinxcos2yi+5sin3ycos4zj+5sin5zcos6xk\mathbf { F } ( x , y , z ) = 5 \sin x \cos ^ { 2 } y \mathbf { i } + 5 \sin ^ { 3 } y \cos ^ { 4 } z \mathbf { j } + 5 \sin ^ { 5 } z \cos ^ { 6 } x \mathbf { k }

(Multiple Choice)
4.9/5
(32)

Use a computer algebra system to compute the flux of F\mathbf { F } across S.SS . S is the surface of the cube cut from the first octant by the planes x=,y=,z= (x,y,z)=3xy+3yz+3zx Select the correct answer.

(Multiple Choice)
4.8/5
(43)

Find the gradient vector field of the scalar function ff . (That is, find the conservative vector field F\mathbf { F } for the potential function ff of F\mathbf { F } .) f(x,y,z)=8xy2+2yz3f ( x , y , z ) = 8 x y ^ { 2 } + 2 y z ^ { 3 }

(Short Answer)
4.8/5
(44)

Find the curl of the vector field. F(x,y,z)=8xyi+10yzj+5xzk\mathbf { F } ( x , y , z ) = 8 x y \mathbf { i } + 10 y z \mathbf { j } + 5 x z \mathbf { k } Select the correct answer.

(Multiple Choice)
4.9/5
(33)

Evaluate the line integral over the given curve CC . C3xyds\int _ { C } 3 x y d s , where CC is the line segment joining (5,7)( - 5 , - 7 ) to (3,1)( 3,1 )

(Short Answer)
4.8/5
(36)

Evaluate the line integral over the given curve CC . C4xyds\int _ { C } 4 x y d s , where CC is the line segment joining (2,1)( - 2 , - 1 ) to (4,5)( 4,5 )

(Short Answer)
4.9/5
(32)

Use Green's Theorem to evaluate the line integral along the positively oriented closed curve CC . C3xydx+4x2dy\oint _ { C } 3 x y d x + 4 x ^ { 2 } d y , where C\mathrm { C } is the triangle with vertices (0,0),(3,4)( 0,0 ) , ( 3,4 ) , and (0,4)( 0,4 ) .

(Multiple Choice)
4.9/5
(31)

A thin wire in the shape of a quarter-circle r(t)=6costi+6sintj,0tπ2\mathbf { r } ( t ) = 6 \cos t \mathbf { i } + 6 \sin t \mathbf { j } , 0 \leq t \leq \frac { \pi } { 2 } , has a linear mass density π(x,y)=2x+4y\pi ( x , y ) = 2 x + 4 y . Find the mass and the location of the center of mass of the wire.

(Short Answer)
4.8/5
(34)

Show that F\mathrm { F } is conservative, and find a function ff such that F=f\mathbf { F } = \nabla f , and use the result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any curve from A(x0,y0,z0)A \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) to B(x1,y1,z1)B \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) . F(x,y,z)=24x3yi+(6x4+4yz2)j+4y2zk;A(0,0,0)\mathbf { F } ( x , y , z ) = 24 x ^ { 3 } y \mathbf { i } + \left( 6 x ^ { 4 } + 4 y z ^ { 2 } \right) \mathbf { j } + 4 y ^ { 2 } z \mathbf { k } ; A ( 0,0,0 ) and B(0,0,2)B ( 0,0 , - 2 ) Select the correct answer.

(Multiple Choice)
4.9/5
(30)

Which plot illustrates the vector field F(x,y,z)=k\mathbf { F } ( x , y , z ) = \mathbf { k } ?

(Multiple Choice)
4.8/5
(39)

 Find the area of the part of paraboloid x=y2+z2 that lies inside the cylinder y2+z2=64\text { Find the area of the part of paraboloid } x = y ^ { 2 } + z ^ { 2 } \text { that lies inside the cylinder } y ^ { 2 } + z ^ { 2 } = 64 \text {. }

(Short Answer)
4.9/5
(36)

Evaluate the surface integral. Round your answer to four decimal places. S8zdS\iint _ { S } 8 z d S SS is surface x=y2+2z2,0y1,0z1x = y ^ { 2 } + 2 z ^ { 2 } , 0 \leq y \leq 1,0 \leq z \leq 1 .

(Short Answer)
4.7/5
(33)

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S f(x,y,z)=z;Sf ( x , y , z ) = z ; S is the part of the torus with vector representation r(u,v)=(5+3cosv)cosui+(5+3cosv)sinuj+3sinvk,0u2π,0vπ2.\mathbf { r } ( u , v ) = ( 5 + 3 \cos v ) \cos u \mathbf { i } + ( 5 + 3 \cos v ) \sin u \mathbf { j } + 3 \sin v \mathbf { k } , 0 \leq u \leq 2 \pi , 0 \leq v \leq \frac { \pi } { 2 } .

(Multiple Choice)
4.9/5
(44)

Evaluate SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } , that is, find the flux of F\mathbf { F } across SS . F(x,y,z)=4zi+yj3xk;S\mathbf { F } ( x , y , z ) = - 4 z \mathbf { i } + y \mathbf { j } - 3 x \mathbf { k } ; \mathrm { S } is the hemisphere z=4x2y2;nz = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } ; \mathbf { n } points upward

(Short Answer)
4.9/5
(39)

Assuming that SS satisfies the conditions of the Divergence Theorem and the scalar functions and components of the vector fields have continuous second order partial derivatives, find s3andS\iint _ { s } 3 \mathbf { a } \cdot \mathbf { n } d S \text {, } where a is the constant vector.

(Short Answer)
4.7/5
(28)

Find the mass of the surface SS having the given mass density. SS is the hemisphere x2+y2+z2=64,z0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 64 , z \geq 0 ; the density at a point PP on SS is equal to the distance between PP and the xyx y -plane. Select the correct answer.

(Multiple Choice)
4.7/5
(37)
Showing 61 - 80 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)