Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the mass of the surface SS having the given mass density. SS is part of the plane x+5y+9z=45x + 5 y + 9 z = 45 in the first octant; the density at a point PP on SS is equal to the square of the distance between PP and the xyx y -plane.

(Multiple Choice)
4.8/5
(35)

Use Green's Theorem to find the work done by the force F(x,y)=(4x9y2)i+6yj\mathbf { F } ( x , y ) = \left( 4 x - 9 y ^ { 2 } \right) \mathbf { i } + 6 y \mathbf { j } in moving a particle in the positive direction once around the triangle with vertices (0,0),(1,0)( 0,0 ) , ( 1,0 ) , and (0,1)( 0,1 ) .

(Short Answer)
4.7/5
(31)

Match the equation with one of the graphs below. r(u,v)=u2i+ucosvj+usinvk\mathbf { r } ( u , v ) = u ^ { 2 } \mathbf { i } + u \cos v \mathbf { j } + u \sin v \mathbf { k }

(Multiple Choice)
4.8/5
(38)

Find the curl of the vector field F\mathbf { F } . F(x,y,x)=6yz4i+5x5y2j+6xk\mathbf { F } ( x , y , x ) = 6 y z ^ { 4 } \mathbf { i } + 5 x ^ { 5 } y ^ { 2 } \mathbf { j } + 6 x \mathbf { k }

(Short Answer)
4.8/5
(29)

Below is given the plot of a vector field F\mathbf { F } in the xyx y -plane. (The zz -component of F\mathbf { F } is 0 .) By studying the plot, determine whether divF\operatorname { div } \mathbf { F } is positive, negative, or zero.  Below is given the plot of a vector field  \mathbf { F }  in the  x y -plane. (The  z -component of  \mathbf { F }  is 0 .) By studying the plot, determine whether  \operatorname { div } \mathbf { F }  is positive, negative, or zero.

(Multiple Choice)
4.8/5
(39)

Evaluate the line integral over the given curve CC . C3y2zds;C:r(t)=2ti+sin7tj+cos7tk,0tπ2\int _ { C } 3 y ^ { 2 } z d s ; C : \mathbf { r } ( t ) = 2 t \mathbf { i } + \sin 7 t \mathbf { j } + \cos 7 t \mathbf { k } , 0 \leq t \leq \frac { \pi } { 2 }

(Short Answer)
4.8/5
(31)

Find the curl of the vector field F\mathbf { F } . F(x,y,x)=7yz2i+4x5y5j+8xk\mathbf { F } ( x , y , x ) = 7 y z ^ { 2 } \mathbf { i } + 4 x ^ { 5 } y ^ { 5 } \mathbf { j } + 8 x \mathbf { k }

(Multiple Choice)
4.9/5
(25)

Find the work done by the force field F(x,y)=xsin(y)i+yj\mathbf { F } ( x , y ) = x \sin ( y ) \mathbf { i } + y \mathbf { j } on a particle that moves along the parabola y=x2y = x ^ { 2 } from (1,1)( 1,1 ) to (2,4)( 2,4 ) .

(Multiple Choice)
4.8/5
(39)

Find the value of the constant cc such that the vector field G(x,y,x)=(6x+2y3+8z)i+(6x3+2y+4z)j+(czx)k\mathbf { G } ( x , y , x ) = \left( 6 x + 2 y ^ { 3 } + 8 z \right) \mathbf { i } + \left( 6 x ^ { 3 } + 2 y + 4 z \right) \mathbf { j } + ( c z - x ) \mathbf { k } is the curl of some vector field F\mathbf { F } .

(Short Answer)
4.9/5
(29)

Use Stoke's theorem to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where F(x,y,z)=e7xi+e4yj+e5zk\mathbf { F } ( x , y , z ) = e ^ { - 7 x } \mathbf { i } + e ^ { 4 y } \mathbf { j } + e ^ { 5 z } \mathbf { k } and CC is the boundary of the part of the plane 8x+y+8z=88 x + y + 8 z = 8 in the first octant. Select the correct answer.

(Multiple Choice)
4.8/5
(36)

Evaluate the surface integral. Round your answer to four decimal places. S3zdS\iint _ { S } 3 z d S SS is surface x=y2+2z2,0y1,0z1x = y ^ { 2 } + 2 z ^ { 2 } , 0 \leq y \leq 1,0 \leq z \leq 1 . Select the correct answer.

(Multiple Choice)
4.9/5
(30)

Use the Divergence Theorem to calculate the surface integral sFdS\iint _ { s } \mathbf { F } \cdot d \mathbf { S } ; that is, calculate the flux of F\mathbf { F } across SS . F(x,y,z)=xyezi+xy2z3jyezk\mathbf { F } ( x , y , z ) = x y e ^ { z } \mathbf { i } + x y ^ { 2 } z ^ { 3 } \mathbf { j } - y e ^ { z } \mathbf { k } SS is the surface of the box bounded by the coordinate planes and the planes x=5,y=2x = 5 , y = 2 and z=1z = 1 . Select the correct answer.

(Multiple Choice)
4.8/5
(27)

Find a vector representation for the surface. The plane that passes through the point (2,4,3)( 2,4,3 ) and contains the vectors 3i+3j2k3 \mathbf { i } + 3 \mathbf { j } - 2 \mathbf { k } and 4i+j+5k4 \mathbf { i } + \mathbf { j } + 5 \mathbf { k }

(Short Answer)
4.7/5
(43)

Find the mass of the surface SS having the given mass density. SS is the hemisphere x2+y2+z2=9,z0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 , z \geq 0 ; the density at a point PP on SS is equal to the distance between PP and the xyx y -plane.

(Short Answer)
4.8/5
(28)

Determine whether F\mathbf { F } is conservative. If so, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y,z)=4x3y2z3i+2x4yz3j+3x4y2z2k\mathbf { F } ( x , y , z ) = 4 x ^ { 3 } y ^ { 2 } z ^ { 3 } \mathbf { i } + 2 x ^ { 4 } y z ^ { 3 } \mathbf { j } + 3 x ^ { 4 } y ^ { 2 } z ^ { 2 } \mathbf { k }

(Short Answer)
4.8/5
(39)

Find the gradient vector field of ff . f(x,y,z)=x2+4y2+6z2f ( x , y , z ) = \sqrt { x ^ { 2 } + 4 y ^ { 2 } + 6 z ^ { 2 } }

(Short Answer)
4.7/5
(28)

Evaluate the line integral over the given curve CC . C(6x+2y2)ds;C:r(t)=(t6)i+tj,0t1\int _ { C } \left( 6 x + 2 y ^ { 2 } \right) d s ; C : \mathbf { r } ( t ) = ( t - 6 ) \mathbf { i } + t \mathbf { j } , 0 \leq t \leq 1

(Multiple Choice)
4.7/5
(33)

Let SS be the cube with vertices (±1,±1,±1)( \pm 1 , \pm 1 , \pm 1 ) . Approximate Sx2+2y2+7z2\iint _ { S } \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 7 z ^ { 2 } } by using a Riemann sum as in Definition 1, taking the patches SijS _ { i j } to be the squares that are the faces of the cube and the points PijP _ { i j } to be the centers of the squares.

(Multiple Choice)
4.7/5
(35)

Determine whether or not vector field is conservative. If it is conservative, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y,z)=20xi+8yj+10zk\mathbf { F } ( x , y , z ) = 20 x \mathbf { i } + 8 y \mathbf { j } + 10 z \mathbf { k }

(Short Answer)
4.9/5
(34)

Find the gradient vector field of ff . f(x,y,z)=x2+2y2+4z2f ( x , y , z ) = \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 4 z ^ { 2 } }

(Multiple Choice)
4.7/5
(37)
Showing 21 - 40 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)