Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Below is given the plot of a vector field F\mathbf { F } in the xyx y -plane. (The zz -component of F\mathbf { F } is 0 .) By studying the plot, determine whether divF\operatorname { div } \mathbf { F } is positive, negative, or zero. Select the correct answer.  Below is given the plot of a vector field  \mathbf { F }  in the  x y -plane. (The  z -component of  \mathbf { F }  is 0 .) By studying the plot, determine whether  \operatorname { div } \mathbf { F }  is positive, negative, or zero. Select the correct answer.

(Multiple Choice)
4.8/5
(43)

A plane lamina with constant density ρ(x,y)=6\rho ( x , y ) = 6 occupies a region in the xyx y -plane bounded by a simple closed path CC . Its moments of inertia about the axes are Ix=ρ3Cy3dx and Iy=ρ3Cx3dyI _ { x } = - \frac { \rho } { 3 } \int _ { C } y ^ { 3 } d x \text { and } I _ { y } = \frac { \rho } { 3 } \int _ { C } x ^ { 3 } d y Find the moments of inertia about the axes, if CC is a rectangle with vertices (0,0),(4,0)( 0,0 ) , ( 4,0 ) , (4,5)( 4,5 ) and (0,5).( 0,5 ) .

(Multiple Choice)
4.9/5
(35)

Let r=xi+yj+zk\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and r=rr = | \mathbf { r } | . Find (6r)\nabla \cdot ( 6 \mathbf { r } ) Select the correct answer.

(Multiple Choice)
4.9/5
(37)

Find a parametric representation for the part of the elliptic paraboloid x+y2+8z2=9x + y ^ { 2 } + 8 z ^ { 2 } = 9 that lies in front of the plane x=0x = 0 . Select the correct answer.

(Multiple Choice)
4.8/5
(39)

Evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } for the vector field F\mathbf { F } and the path CC . (Hint: Show that F\mathbf { F } is conservative, and pick a simpler path.) (x,y)= 18-5yx + 12y+5x C:(t)=(-2-t)+2t;0\leqt\leq\pi

(Multiple Choice)
4.8/5
(34)

Find the area of the surface. The part of the paraboloid r(u,v)=ucosvi+usinvj+u2k;0u3,0v2π\mathbf { r } ( u , v ) = u \cos v \mathbf { i } + u \sin v \mathbf { j } + u ^ { 2 } \mathbf { k } ; 0 \leq u \leq 3,0 \leq v \leq 2 \pi

(Short Answer)
4.9/5
(43)

Find the area of the part of the surface y=4x+z2y = 4 x + z ^ { 2 } that lies between the planes x=0,x=4,z=0x = 0 , x = 4 , z = 0 , and z=1z = 1 .

(Short Answer)
4.9/5
(49)

Let SS be the cube with vertices (±1,±1,±1)( \pm 1 , \pm 1 , \pm 1 ) . Approximate Sx2+2y2+7z2\iint _ { S } \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 7 z ^ { 2 } } by using a Riemann sum as in Definition 1, taking the patches SijS _ { i j } to be the squares that are the faces of the cube and the points PijP _ { i j } to be the centers of the squares. Select the correct answer.

(Multiple Choice)
4.7/5
(38)

Find the exact mass of a thin wire in the shape of the helix x=2sin(t),y=2cos(t),z=3t,0t2πx = 2 \sin ( t ) , y = 2 \cos ( t ) , z = 3 t , 0 \leq t \leq 2 \pi if the density is 5

(Multiple Choice)
4.9/5
(42)

Find the work done by the force field F(x,y)=xsin(y)i+yj\mathbf { F } ( x , y ) = x \sin ( y ) \mathbf { i } + y \mathbf { j } on a particle that moves along the parabola y=x2y = x ^ { 2 } from (1,1)( 1,1 ) to (2,4)( 2,4 ) .

(Short Answer)
4.7/5
(36)

Evaluate Sf(x,y,z)dS\iint _ { S } f ( x , y , z ) d S f(x,y,z)=x+y;Sf ( x , y , z ) = x + y ; S is the part of the plane 2x+4y+3z=242 x + 4 y + 3 z = 24 in the first octant.

(Multiple Choice)
4.9/5
(38)

Use Stokes' Theorem to evaluate ScurFdS\iint _ { S } \operatorname { cur } \mathbf { F } \cdot d \mathbf { S } . F(x,y,z)=6xyi+5yzj+2z2k\mathbf { F } ( x , y , z ) = 6 x y \mathbf { i } + 5 y z \mathbf { j } + 2 z ^ { 2 } \mathbf { k } SS is the part of the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } lying below the plane z=6z = 6 and oriented with normal pointing downward.

(Short Answer)
4.9/5
(37)

Determine whether F\mathbf { F } is conservative. If so, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y)=(14x14x2y)e2xyi14x3e2xyj\mathbf { F } ( x , y ) = \left( 14 x - 14 x ^ { 2 } y \right) e ^ { - 2 x y } \mathbf { i } - 14 x ^ { 3 } e ^ { - 2 x y } \mathbf { j }

(Short Answer)
5.0/5
(34)

Use Stoke's theorem to evaluate SFdr\iint _ { S } \mathbf { F } \cdot d r . F(x,y,z)=4zi+2xj+6yk\mathbf { F } ( x , y , z ) = 4 z \mathbf { i } + 2 x \mathbf { j } + 6 y \mathbf { k } CC is the curve of intersection of the plane z=x+9z = x + 9 and the cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9

(Short Answer)
4.7/5
(41)

Find the mass of the surface SS having the given mass density. SS is part of the plane x+7y+3z=21x + 7 y + 3 z = 21 in the first octant; the density at a point PP on SS is equal to the square of the distance between PP and the xyx y -plane.

(Short Answer)
4.9/5
(30)

Determine whether or not vector field is conservative. If it is conservative, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y,z)=18xi+10yj+4zk\mathbf { F } ( x , y , z ) = 18 x \mathbf { i } + 10 y \mathbf { j } + 4 z \mathbf { k }

(Short Answer)
4.8/5
(37)

Match the vector field with its plot. F(x,y)=xx2+y2iyx2+y2j\mathbf { F } ( x , y ) = \frac { x } { x ^ { 2 } + y ^ { 2 } } \mathbf { i } - \frac { y } { x ^ { 2 } + y ^ { 2 } } \mathbf { j }

(Multiple Choice)
4.8/5
(42)

 Find the gradient vector field of f(x,y,z)=xcos3y7z\text { Find the gradient vector field of } f ( x , y , z ) = x \cos \frac { 3 y } { 7 z }

(Short Answer)
4.8/5
(42)

Assuming that SS satisfies the conditions of the Divergence Theorem and the scalar functions and components of the vector fields have continuous second order partial derivatives, find sandS\iint _ { s } \mathbf { a } \cdot \mathbf { n } d S \text {, } where a is the constant vector.

(Short Answer)
4.9/5
(39)
Showing 141 - 159 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)