Exam 16: Vector Calculus

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Show that F\mathbf { F } is conservative, and find a function ff such that F=f\mathbf { F } = \nabla f , and use the result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any curve from A(x0,y0,z0)A \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) to B(x1,y1,z1)B \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) . F(x,y,z)=21x2yi+(7x3+15y2z2)j+10y3zk;A(0,0,0)\mathbf { F } ( x , y , z ) = 21 x ^ { 2 } y \mathbf { i } + \left( 7 x ^ { 3 } + 15 y ^ { 2 } z ^ { 2 } \right) \mathbf { j } + 10 y ^ { 3 } z \mathbf { k } ; A ( 0,0,0 ) and B(1,0,3)B ( - 1,0 , - 3 )

(Multiple Choice)
4.7/5
(33)

Find the area of the surface SS where SS is the part of the sphere x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 that lies to the right of the xzx z -plane and inside the cylinder x2+z2=4x ^ { 2 } + z ^ { 2 } = 4 .

(Short Answer)
4.8/5
(31)

Find the moment of inertia about the zz -axis of a thin funnel in the shape of a cone z=x2+y2,1z4z = \sqrt { x ^ { 2 } + y ^ { 2 } } , 1 \leq z \leq 4 , if its density function is ρ(x,y,z)=14z\rho ( x , y , z ) = 14 - z .

(Short Answer)
4.8/5
(45)

Use Green's Theorem to evaluate the line integral along the positively oriented closed curve CC . C(6xy+5ln(1+x))dx+2x2dy\oint _ { C } ( 6 x y + 5 \ln ( 1 + x ) ) d x + 2 x ^ { 2 } d y , where CC is the cardioid r=2+2cosθr = 2 + 2 \cos \theta .

(Multiple Choice)
4.9/5
(35)

Let r=xi+yj+zk\mathbf { r } = x \mathbf { i } + y \mathbf { j } + z \mathbf { k } and r=rr = | \mathbf { r } | . Find (r)\nabla \cdot ( \mathbf { r } )

(Multiple Choice)
4.8/5
(30)

Determine whether F\mathbf { F } is conservative. If so, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y,z)=(2sinh2z)i+(4e4zcos4y)j+(4xcosh2z)k\mathbf { F } ( x , y , z ) = ( 2 \sinh 2 z ) \mathbf { i } + \left( 4 e ^ { 4 z } \cos 4 y \right) \mathbf { j } + ( 4 x \cosh 2 z ) \mathbf { k }

(Essay)
4.7/5
(49)

Use Stokes' Theorem to evaluate CFdr\oint _ { C } \mathbf { F } \cdot d \mathbf { r } . F(x,y,z)=7cosxi+5eyj+2xyk\mathbf { F } ( x , y , z ) = 7 \cos x \mathbf { i } + 5 e ^ { y } \mathbf { j } + 2 x y \mathbf { k } CC is the curve obtained by intersecting the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 with the hyperbolic paraboloid z=x2y2z = x ^ { 2 } - y ^ { 2 } , oriented in a counterclockwise direction when viewed from above

(Multiple Choice)
4.7/5
(41)

Let F=f\mathbf { F } = \nabla f , where f(x,y)=sin(x6y)f ( x , y ) = \sin ( x - 6 y ) Which of the following equations does the line segment from (0,0)( 0,0 ) to (0,π)( 0 , \pi ) satisy? Select the correct answer.

(Multiple Choice)
4.7/5
(30)

Find a parametric representation for the part of the elliptic paraboloid x+y2+10z2=5x + y ^ { 2 } + 10 z ^ { 2 } = 5 that lies in front of the plane x=0x = 0 .

(Multiple Choice)
4.7/5
(38)

Find the work done by the force field F\mathbf { F } on a particle that moves along the curve CC . F(x,y)=(5x+5y)i+5xyj;C:r(t)=2t2i+t2j,0t1\mathbf { F } ( x , y ) = ( 5 x + 5 y ) \mathbf { i } + 5 x y \mathbf { j } ; \quad C : \mathbf { r } ( t ) = 2 t ^ { 2 } \mathbf { i } + t ^ { 2 } \mathbf { j } , 0 \leq t \leq 1

(Short Answer)
4.9/5
(33)

Determine whether F\mathbf { F } is conservative. If so, find a function ff such that F=f\mathbf { F } = \nabla f . Select the correct answer. F(x,y)=(5x4+4y)i+(7x5y4)j\mathbf { F } ( x , y ) = \left( 5 x ^ { 4 } + 4 y \right) \mathbf { i } + \left( 7 x - 5 y ^ { 4 } \right) \mathbf { j }

(Multiple Choice)
4.9/5
(32)

Find a parametric representation for the part of the plane z=6z = 6 that lies inside the cylinder x2+y2=49x ^ { 2 } + y ^ { 2 } = 49 .

(Short Answer)
4.7/5
(39)

A thin wire is bent into the shape of a semicircle x2+y2=4,x>0x ^ { 2 } + y ^ { 2 } = 4 , x > 0 . If the linear density is 4 , find the exact mass of the wire. Select the correct answer.

(Multiple Choice)
4.8/5
(37)

 Find the curl of 8x8zi+0j+5xz8k\text { Find the curl of } 8 x ^ { 8 } z \mathbf { i } + 0 \mathbf { j } + 5 x z ^ { 8 } \mathbf { k } \text {. }

(Short Answer)
4.8/5
(29)

Determine whether or not vector field is conservative. If it is conservative, find a function ff such that F=f\mathbf { F } = \nabla f . F(x,y,z)=5zyi+5xzj+5xyk\mathbf { F } ( x , y , z ) = 5 z y \mathbf { i } + 5 x z \mathbf { j } + 5 x y \mathbf { k }

(Short Answer)
4.9/5
(34)

Let SS be the cube with vertices (±1,±1,±1)( \pm 1 , \pm 1 , \pm 1 ) . Approximate Sx2+2y2+7z2\iint _ { S } \sqrt { x ^ { 2 } + 2 y ^ { 2 } + 7 z ^ { 2 } } by using a Riemann sum as in Definition 1, taking the patches SijS _ { i j } to be the squares that are the faces of the cube and the points PijP _ { i j } to be the centers of the squares.

(Multiple Choice)
4.8/5
(35)

A particle starts at the point (3,0)( - 3,0 ) , moves along the xx -axis to (3,0)( 3,0 ) and then along the semicircle y=9x2y = \sqrt { 9 - x ^ { 2 } } to the starting point. Use Green's Theorem to find the work done on this particle by the force field F(x,y)={24x,8x3+24xy2}\mathbf { F } ( x , y ) = \left\{ 24 x , 8 x ^ { 3 } + 24 x y ^ { 2 } \right\} Select the correct answer.

(Multiple Choice)
4.9/5
(31)

Match the equation with one of the graphs below. r(u,v)=3sinucosvi+3sinusinvj+3cosuk\mathbf { r } ( u , v ) = 3 \sin u \cos v \mathbf { i } + 3 \sin u \sin v \mathbf { j } + 3 \cos u \mathbf { k }

(Multiple Choice)
4.8/5
(33)

 Find the exact value of Cxeyzds, where C is the line segment from (0,0,0) to (1,4,9)\text { Find the exact value of } \int _ { C } x e ^ {y z } d s , \text { where } C \text { is the line segment from } ( 0,0,0 ) \text { to } ( 1,4,9 ) \text {. }

(Short Answer)
4.8/5
(32)

Show that F\mathrm { F } is conservative, and find a function ff such that F=f\mathbf { F } = \nabla f , and use the result to evaluate CFdr\int _ { C } \mathbf { F } \cdot d \mathbf { r } , where CC is any curve from A(x0,y0,z0)A \left( x _ { 0 } , y _ { 0 } , z _ { 0 } \right) to B(x1,y1,z1)B \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) . F(x,y,z)=27x2yi+(9x3+24y3z2)j+12y4zk;A(0,0,0)\mathbf { F } ( x , y , z ) = 27 x ^ { 2 } y \mathbf { i } + \left( 9 x ^ { 3 } + 24 y ^ { 3 } z ^ { 2 } \right) \mathbf { j } + 12 y ^ { 4 } z \mathbf { k } ; A ( 0,0,0 ) and B(1,0,1)B ( - 1,0,1 )

(Multiple Choice)
4.7/5
(28)
Showing 41 - 60 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)