Exam 8: RLC Circuits

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

the switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=1kΩ,R2=2kΩ,R3=3\mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 3 kΩ,L=200mH,C=0.02μF,Is=3 mA\mathrm { k } \Omega , \mathrm { L } = 200 \mathrm { mH } , \mathrm { C } = 0.02 \mu \mathrm { F } , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} .  the switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 3   \mathrm { k } \Omega , \mathrm { L } = 200 \mathrm { mH } , \mathrm { C } = 0.02 \mu \mathrm { F } , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} .

Free
(Essay)
4.8/5
(33)
Correct Answer:
Verified

i(0)=I0=Is×R1/(R1+R2)=1 mA.v(0)=V0=0\mathrm { i } ( 0 ) = \mathrm { I } _ { 0 } = \mathrm { I } _ { \mathrm { s } } \times \mathrm { R } _ { 1 } / \left( \mathrm { R } _ { 1 } + \mathrm { R } _ { 2 } \right) = 1 \mathrm {~mA} . \mathrm { v } ( 0 ) = \mathrm { V } _ { 0 } = 0
R=R3=3kΩ\mathrm { R } = \mathrm { R } _ { 3 } = 3 \mathrm { k } \Omega
d2v(t)dt2+RLdv(t)dt+1LCv(t)=0\frac { d ^ { 2 } v ( t ) } { d t ^ { 2 } } + \frac { R } { L } \frac { d v ( t ) } { d t } + \frac { 1 } { L C } v ( t ) = 0 a2=1,a1=R/L=15000,a0=1/(LC)=2.5×108a _ { 2 } = 1 , a _ { 1 } = R / L = 15000 , a _ { 0 } = 1 / ( \mathrm { LC } ) = 2.5 \times 10 ^ { 8 }
α=a1/2=7500,ω0=a0=15811.3883\alpha = a _ { 1 } / 2 = 7500 , \omega _ { 0 } = \sqrt { a _ { 0 } } = 15811.3883
Since α<ω0\alpha < \omega _ { 0 } , this is case 3 (underdamped).
Dv0=dv(0)dt=i(0)C=I0C=50000D v _ { 0 } = \frac { d v ( 0 ) } { d t } = \frac { i ( 0 ) } { C } = \frac { I _ { 0 } } { C } = 50000
β=ωo2α2=13919.4109\beta = \sqrt { \omega _ { o } ^ { 2 } - \alpha ^ { 2 } } = 13919.4109
s1=α+jβ=7500+j13919.4109s _ { 1 } = - \alpha + j \beta = - 7500 + \mathrm { j } 13919.4109
s2=αjβ=7500j13919.4109s _ { 2 } = - \alpha - j \beta = - 7500 - \mathrm { j } 13919.4109
B1=V0=0B _ { 1 } = V _ { 0 } = 0
B2=Dv0+αV0β=3.5921B _ { 2 } = \frac { D v _ { 0 } + \alpha V _ { 0 } } { \beta } = 3.5921
v(t)=3.5921e7500tsin(13919.4109t)u(t)v ( t ) = 3.5921 \mathrm { e } ^ { - 7500 t } \sin ( 13919.4109 t ) u ( t )

the switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=2kΩ,R2=3kΩ,R3=1\mathrm { R } _ { 1 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 kΩ,L=125mH,C=0.05μF,Vs=5 V\mathrm { k } \Omega , \mathrm { L } = 125 \mathrm { mH } , \mathrm { C } = 0.05 \mu \mathrm { F } , \mathrm { V } _ { \mathrm { s } } = 5 \mathrm {~V} .  the switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1   \mathrm { k } \Omega , \mathrm { L } = 125 \mathrm { mH } , \mathrm { C } = 0.05 \mu \mathrm { F } , \mathrm { V } _ { \mathrm { s } } = 5 \mathrm {~V} .

Free
(Essay)
4.9/5
(35)
Correct Answer:
Verified

v(0)=V0=Vs×R2/(R1+R2)=3 V.i(0)=I0=0R=R2+R3=4kΩd2v(t)dt2+RLdv(t)dt+1LCv(t)=0a2=1,a1=R/L=32000,a0=1/(LC)=1.6×108α=a1/2=16000,ω0=a0=12649.11064\begin{array} { l } \mathrm { v } ( 0 ) = \mathrm { V } _ { 0 } = \mathrm { V } _ { \mathrm { s } } \times \mathrm { R } _ { 2 } / \left( \mathrm { R } _ { 1 } + \mathrm { R } _ { 2 } \right) = 3 \mathrm {~V} . \mathrm { i } ( 0 ) = \mathrm { I } _ { 0 } = 0 \\\mathrm { R } = \mathrm { R } _ { 2 } + \mathrm { R } _ { 3 } = 4 \mathrm { k } \Omega \\\frac { d ^ { 2 } v ( t ) } { d t ^ { 2 } } + \frac { R } { L } \frac { d v ( t ) } { d t } + \frac { 1 } { L C } v ( t ) = 0 \\\mathrm { a } _ { 2 } = 1 , \mathrm { a } _ { 1 } = \mathrm { R } / \mathrm { L } = 32000 , \mathrm { a } _ { 0 } = 1 / ( \mathrm { LC } ) = 1.6 \times 10 ^ { 8 } \\\alpha = \mathrm { a } _ { 1 } / 2 = 16000 , \omega _ { 0 } = \sqrt { a _ { 0 } } = 12649.11064\end{array}
Since α>ω0\alpha > \omega _ { 0 } , this is case 1 (overdamped).
Dv0=dv(0)dt=i(0)C=I0C=0D v _ { 0 } = \frac { d v ( 0 ) } { d t } = \frac { i ( 0 ) } { C } = \frac { I _ { 0 } } { C } = 0
s1=α+α2ω02=6202.041s _ { 1 } = - \alpha + \sqrt { \alpha ^ { 2 } - \omega _ { 0 } ^ { 2 } } = - 6202.041
s2=αα2ω02=25797.959s _ { 2 } = - \alpha - \sqrt { \alpha ^ { 2 } - \omega _ { 0 } ^ { 2 } } = - 25797.959
A1=V0s2Dv0s2s1=3.9495A _ { 1 } = \frac { V _ { 0 } s _ { 2 } - D v _ { 0 } } { s _ { 2 } - s _ { 1 } } = 3.9495
A2=Dv0V0s1s2s1=0.9495A _ { 2 } = \frac { D v _ { 0 } - V _ { 0 } s _ { 1 } } { s _ { 2 } - s _ { 1 } } = - 0.9495
v(t)=[3.9495e6202.041t0.9495e25797.96t]u(t)\mathrm { v } ( \mathrm { t } ) = \left[ 3.9495 \mathrm { e } ^ { - 6202.041 \mathrm { t } } - 0.9495 \mathrm { e } ^ { - 25797.96 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } )

switch in the circuit shown below has been opened for a long time before it is closed at t =0= 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=100Ω,R2=200Ω,L=100R _ { 1 } = 100 \Omega , R _ { 2 } = 200 \Omega , L = 100 mH,C=0.02μF,Is=5 mA,i(0)=I0=1 mA,v(0)=V0=0.5 V\mathrm { mH } , \mathrm { C } = 0.02 \mu \mathrm { F } , \mathrm { I } _ { \mathrm { s } } = 5 \mathrm {~mA} , \mathrm { i } ( 0 ) = \mathrm { I } _ { 0 } = 1 \mathrm {~mA} , \mathrm { v } ( 0 ) = \mathrm { V } _ { 0 } = 0.5 \mathrm {~V}  switch in the circuit shown below has been opened for a long time before it is closed at t  = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 100 \Omega , R _ { 2 } = 200 \Omega , L = 100   \mathrm { mH } , \mathrm { C } = 0.02 \mu \mathrm { F } , \mathrm { I } _ { \mathrm { s } } = 5 \mathrm {~mA} , \mathrm { i } ( 0 ) = \mathrm { I } _ { 0 } = 1 \mathrm {~mA} , \mathrm { v } ( 0 ) = \mathrm { V } _ { 0 } = 0.5 \mathrm {~V}

Free
(Essay)
4.9/5
(33)
Correct Answer:
Verified

Change IsI _ { s } and R1R _ { 1 } to a series connection of
Vs=R1Is=0.5 V\mathrm { V } _ { \mathrm { s } } = \mathrm { R } _ { 1 } \mathrm { I } _ { \mathrm { s } } = 0.5 \mathrm {~V}
and a resistor R1\mathrm { R } _ { 1 } .
Let
R=R1+R2=300ΩVs+Ri(t)+Ldi(t)dt+v(t)=0\begin{array} { l } \mathrm { R } = \mathrm { R } _ { 1 } + \mathrm { R } _ { 2 } = 300 \Omega \\- V _ { s } + R i ( t ) + L \frac { d i ( t ) } { d t } + v ( t ) = 0\end{array}
i(t)=Cdv(t)dti ( t ) = C \frac { d v ( t ) } { d t }
Substituting Equation (2) into Equation (1), we obtain
Vs+RCdv(t)dt+LCd2v(t)dt2+v(t)=0- V _ { s } + R C \frac { d v ( t ) } { d t } + L C \frac { d ^ { 2 } v ( t ) } { d t ^ { 2 } } + v ( t ) = 0
which can be rearranged as d2v(t)dt2+RLdv(t)dt+1LCv(t)=1LCVs\frac { d ^ { 2 } v ( t ) } { d t ^ { 2 } } + \frac { R } { L } \frac { d v ( t ) } { d t } + \frac { 1 } { L C } v ( t ) = \frac { 1 } { L C } V _ { s }
From Equation (2), we have
dv(t)dt=i(t)Cdv(0)dt=i(0)Ca2=1a1=RL=3000a0=1LC=5×108α=a1/2=1500,ω0=a0=22360.6798\begin{array} { l } \frac { d v ( t ) } { d t } = \frac { i ( t ) } { C } \\\frac { d v ( 0 ) } { d t } = \frac { i ( 0 ) } { C } \\\mathrm { a } _ { 2 } = 1 \\a _ { 1 } = \frac { R } { L } = 3000 \\a _ { 0 } = \frac { 1 } { L C } = 5 \times 10 ^ { 8 } \\\alpha = \mathrm { a } _ { 1 } / 2 = 1500 , \omega _ { 0 } = \sqrt { a _ { 0 } } = 22360.6798\end{array}
Since α<ω0\alpha < \omega _ { 0 } , this is case 3 (underdamped).
β=ωo2α2=22310.3115s1=α+jβ=1500+j22310.3115\begin{array} { l } \beta = \sqrt { \omega _ { o } ^ { 2 } - \alpha ^ { 2 } } = 22310.3115 \\s _ { 1 } = - \alpha + j \beta = - 1500 + \mathrm { j } 22310.3115\end{array}
s2=αjβ=1500j22310.3115s _ { 2 } = - \alpha - j \beta = - 1500 - \mathrm { j } 22310.3115
B1=V0Vs=0 VB _ { 1 } = V _ { 0 } - V _ { \mathrm { s } } = 0 \mathrm {~V}
B2=Dv0+α(V0Vs)β=2.241116 VB _ { 2 } = \frac { D v _ { 0 } + \alpha \left( V _ { 0 } - V _ { s } \right) } { \beta } = 2.241116 \mathrm {~V}
v(t)=[0.5+2.241116e1500tsin(22310.3115t)]u(t)V\mathrm { v } ( \mathrm { t } ) = \left[ 0.5 + 2.241116 \mathrm { e } ^ { - 1500 \mathrm { t } } \sin ( 22310.3115 \mathrm { t } ) \right] \mathrm { u } ( \mathrm { t } ) \mathrm { V }

the switch 1 in the circuit shown below has been closed for a long time before it is opened at t=0t = 0 , and the switch 2 has been opened for a long time before it is closed at t=0t = 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=100Ω,R2=200Ω,R3=400Ω,L=90R _ { 1 } = 100 \Omega , R _ { 2 } = 200 \Omega , R _ { 3 } = 400 \Omega , L = 90 mH,C=0.02μF,Is=3 mA, Vs=6 V\mathrm { mH } , \mathrm { C } = 0.02 \mu \mathrm { F } , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} .  the switch 1 in the circuit shown below has been closed for a long time before it is opened at  t = 0 , and the switch 2 has been opened for a long time before it is closed at  t = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 100 \Omega , R _ { 2 } = 200 \Omega , R _ { 3 } = 400 \Omega , L = 90   \mathrm { mH } , \mathrm { C } = 0.02 \mu \mathrm { F } , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} .

(Essay)
4.9/5
(30)

the switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=1kΩ,R2=2kΩ,R3=3R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 2 \mathrm { k } \Omega , R _ { 3 } = 3 kΩ,L=250mH,C=0.025μF,Vs=2.2 V\mathrm { k } \Omega , \mathrm { L } = 250 \mathrm { mH } , \mathrm { C } = 0.025 \mu \mathrm { F } , \mathrm { V } _ { \mathrm { s } } = 2.2 \mathrm {~V} .  the switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 2 \mathrm { k } \Omega , R _ { 3 } = 3   \mathrm { k } \Omega , \mathrm { L } = 250 \mathrm { mH } , \mathrm { C } = 0.025 \mu \mathrm { F } , \mathrm { V } _ { \mathrm { s } } = 2.2 \mathrm {~V} .

(Essay)
4.7/5
(23)

switch in the circuit shown below has been opened for a long time before it is closed at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=500Ω,R2=1kΩ,L=200\mathrm { R } _ { 1 } = 500 \Omega , \mathrm { R } _ { 2 } = 1 \mathrm { k } \Omega , \mathrm { L } = 200 mH,C=0.05μF,Vs=3 V,i(0)=I0=1 mA,v(0)=V0=0.5 V\mathrm { mH } , \mathrm { C } = 0.05 \mu \mathrm { F } , \mathrm { V } _ { \mathrm { s } } = 3 \mathrm {~V} , \mathrm { i } ( 0 ) = \mathrm { I } _ { 0 } = 1 \mathrm {~mA} , \mathrm { v } ( 0 ) = \mathrm { V } _ { 0 } = 0.5 \mathrm {~V}  switch in the circuit shown below has been opened for a long time before it is closed at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 500 \Omega , \mathrm { R } _ { 2 } = 1 \mathrm { k } \Omega , \mathrm { L } = 200   \mathrm { mH } , \mathrm { C } = 0.05 \mu \mathrm { F } , \mathrm { V } _ { \mathrm { s } } = 3 \mathrm {~V} , \mathrm { i } ( 0 ) = \mathrm { I } _ { 0 } = 1 \mathrm {~mA} , \mathrm { v } ( 0 ) = \mathrm { V } _ { 0 } = 0.5 \mathrm {~V}

(Essay)
4.7/5
(39)

 Find the current i(t) through the inductor for t0 in the circuit shown below. Assume R1=\text { Find the current i(t) through the inductor for } \mathrm { t } \geq 0 \text { in the circuit shown below. Assume } \mathrm { R } _ { 1 } = 100Ω,R2=200Ω,L=50mH,C=0.01μF,Vs=5 V.I0=1 mA, V0=0.5 V100 \Omega , \mathrm { R } _ { 2 } = 200 \Omega , \mathrm { L } = 50 \mathrm { mH } , \mathrm { C } = 0.01 \mu \mathrm { F } , \mathrm { V } _ { \mathrm { s } } = 5 \mathrm {~V} . \mathrm { I } _ { 0 } = 1 \mathrm {~mA} , \mathrm {~V} _ { 0 } = 0.5 \mathrm {~V} \text { Find the current i(t) through the inductor for } \mathrm { t } \geq 0 \text { in the circuit shown below. Assume } \mathrm { R } _ { 1 } =   100 \Omega , \mathrm { R } _ { 2 } = 200 \Omega , \mathrm { L } = 50 \mathrm { mH } , \mathrm { C } = 0.01 \mu \mathrm { F } , \mathrm { V } _ { \mathrm { s } } = 5 \mathrm {~V} . \mathrm { I } _ { 0 } = 1 \mathrm {~mA} , \mathrm {~V} _ { 0 } = 0.5 \mathrm {~V}

(Essay)
4.8/5
(29)

switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=1kΩ,R2=2kΩ,R3=3\mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 3 kΩ,R4=2.5kΩ,L=200mH,C=0.02μF,Is=3 mA\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2.5 \mathrm { k } \Omega , \mathrm { L } = 200 \mathrm { mH } , \mathrm { C } = 0.02 \mu \mathrm { F } , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} .  switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 3   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2.5 \mathrm { k } \Omega , \mathrm { L } = 200 \mathrm { mH } , \mathrm { C } = 0.02 \mu \mathrm { F } , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} .

(Essay)
4.7/5
(35)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)