Exam 5: Operational Amplifier Circuits

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

the circuit shown below, let R1=1kΩ,R2=2kΩ,R3=6kΩ,R4=500Ω,R5=5kΩ,R6=3kΩ,R7=1.5kΩ,vs=1 V\mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 500 \Omega , \mathrm { R } _ { 5 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 6 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 7 } = 1.5 \mathrm { k } \Omega , \mathrm { v } _ { \mathrm { s } } = 1 \mathrm {~V} (a) write a node equation at node 1 by summing the currents leaving node 1 . Express vav _ { a } as a function of v0\mathrm { v } _ { 0 } . (b) write a node equation at node 2 by summing the currents leaving node 2 . Express vnv _ { n } as a function of v0v _ { 0 } . (c) write a node equation at node 3 by summing the currents leaving node 3 . (d) find the numerical value of v0,vp,vn,va\mathrm { v } _ { 0 } , \mathrm { v } _ { \mathrm { p } } , \mathrm { v } _ { \mathrm { n } } , \mathrm { v } _ { \mathrm { a } } .  the circuit shown below, let  \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 500 \Omega , \mathrm { R } _ { 5 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 6 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 7 } = 1.5 \mathrm { k } \Omega , \mathrm { v } _ { \mathrm { s } } = 1 \mathrm {~V}  (a) write a node equation at node 1 by summing the currents leaving node 1 . Express  v _ { a }  as a function of  \mathrm { v } _ { 0 } . (b) write a node equation at node 2 by summing the currents leaving node 2 . Express  v _ { n }  as a function of  v _ { 0 } . (c) write a node equation at node 3 by summing the currents leaving node 3 . (d) find the numerical value of  \mathrm { v } _ { 0 } , \mathrm { v } _ { \mathrm { p } } , \mathrm { v } _ { \mathrm { n } } , \mathrm { v } _ { \mathrm { a } } .

Free
(Essay)
4.9/5
(32)
Correct Answer:
Verified

(a)
0voR6+0vaR7=0\frac { 0 - v _ { o } } { R _ { 6 } } + \frac { 0 - v _ { a } } { R _ { 7 } } = 0
va=R7R6vov _ { a } = - \frac { R _ { 7 } } { R _ { 6 } } v _ { o }
(b)
vn0R4+vnvoR5=0\frac { v _ { n } - 0 } { R _ { 4 } } + \frac { v _ { n } - v _ { o } } { R _ { 5 } } = 0
(1R4+1R5)vn=voR5\left( \frac { 1 } { R _ { 4 } } + \frac { 1 } { R _ { 5 } } \right) v _ { n } = \frac { v _ { o } } { R _ { 5 } }
(c)
vpvsR1+vpR3+vpvaR2=0\frac { v _ { p } - v _ { s } } { R _ { 1 } } + \frac { v _ { p } } { R _ { 3 } } + \frac { v _ { p } - v _ { a } } { R _ { 2 } } = 0
vp=vnv _ { p } = v _ { n }
(1R1+1R3+1R2)vp1R2va=vsR1\left( \frac { 1 } { R _ { 1 } } + \frac { 1 } { R _ { 3 } } + \frac { 1 } { R _ { 2 } } \right) v _ { p } - \frac { 1 } { R _ { 2 } } v _ { a } = \frac { v _ { s } } { R _ { 1 } }
(1R1+1R3+1R2)R4R4+R5vo+R7R2R6vo=vsR1\left( \frac { 1 } { R _ { 1 } } + \frac { 1 } { R _ { 3 } } + \frac { 1 } { R _ { 2 } } \right) \frac { R _ { 4 } } { R _ { 4 } + R _ { 5 } } v _ { o } + \frac { R _ { 7 } } { R _ { 2 } R _ { 6 } } v _ { o } = \frac { v _ { s } } { R _ { 1 } } vo=1R1(1R1+1R3+1R2)R4R4+R5+R7R2R6vs Vn=0.2264 V,vp=0.2264 V,va=1.2453 V,v0=2.4906 V\begin{array} { l } v _ { o } = \frac { \frac { 1 } { R _ { 1 } } } { \left( \frac { 1 } { R _ { 1 } } + \frac { 1 } { R _ { 3 } } + \frac { 1 } { R _ { 2 } } \right) \frac { R _ { 4 } } { R _ { 4 } + R _ { 5 } } + \frac { R _ { 7 } } { R _ { 2 } R _ { 6 } } } v _ { s } \\\mathrm {~V} _ { \mathrm { n } } = 0.2264 \mathrm {~V} , \mathrm { v } _ { \mathrm { p } } = 0.2264 \mathrm {~V} , \mathrm { v } _ { \mathrm { a } } = - 1.2453 \mathrm {~V} , \mathrm { v } _ { 0 } = 2.4906 \mathrm {~V}\end{array}

circuit shown below generates output signal vo given by vo=10v15v2\mathrm { v } _ { \mathrm { o } } = 10 \mathrm { v } _ { 1 } - 5 \mathrm { v } _ { 2 } where v1v _ { 1 } and v2v _ { 2 } are two input signals. Find R1,R2,R3R _ { 1 } , R _ { 2 } , R _ { 3 } , and R4R _ { 4 } .  circuit shown below generates output signal vo given by  \mathrm { v } _ { \mathrm { o } } = 10 \mathrm { v } _ { 1 } - 5 \mathrm { v } _ { 2 }  where  v _ { 1 }  and  v _ { 2 }  are two input signals. Find  R _ { 1 } , R _ { 2 } , R _ { 3 } , and  R _ { 4 } .

Free
(Essay)
4.8/5
(40)
Correct Answer:
Verified

One solution: R1=4kΩ,R2=5kΩ,R3=1kΩ,R4=9kΩR _ { 1 } = 4 \mathrm { k } \Omega , R _ { 2 } = 5 \mathrm { k } \Omega , R _ { 3 } = 1 \mathrm { k } \Omega , R _ { 4 } = 9 \mathrm { k } \Omega There are many solutions. Superposition principle can be used to show that the answer is correct.

the circuit shown below, let R1=1kΩ,R2=3.6kΩ,Ri=10kΩ,R0=600Ω,A=5000,vt=1 VR _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 3.6 \mathrm { k } \Omega , R _ { i } = 10 \mathrm { k } \Omega , R _ { 0 } = 600 \Omega , A = 5000 , v _ { t } = 1 \mathrm {~V} Find the value of iti _ { t } and the output resistance Rout =vt/itR _ { \text {out } } = v _ { t } / i _ { t } .  the circuit shown below, let  R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 3.6 \mathrm { k } \Omega , R _ { i } = 10 \mathrm { k } \Omega , R _ { 0 } = 600 \Omega , A = 5000 , v _ { t } = 1 \mathrm {~V}  Find the value of  i _ { t }  and the output resistance  R _ { \text {out } } = v _ { t } / i _ { t } .

Free
(Essay)
4.9/5
(42)
Correct Answer:
Verified

vn=R1RiR1+RiR2+R1RiR1+Rivi=R1RiR1R2+R2Ri+R1Rivi=0.2016 Vv _ { n } = \frac { \frac { R _ { 1 } R _ { i } } { R _ { 1 } + R _ { i } } } { R _ { 2 } + \frac { R _ { 1 } R _ { i } } { R _ { 1 } + R _ { i } } } v _ { i } = \frac { R _ { 1 } R _ { i } } { R _ { 1 } R _ { 2 } + R _ { 2 } R _ { i } + R _ { 1 } R _ { i } } v _ { i } = 0.2016 \mathrm {~V}
it=vtvnR2+vtA(0vn)Ro=vlR1RiR1R2+R2Ri+R1RivlR2+vl+AR1RiR1R2+R2Ri+R1RiviRo=1.682 Ai _ { t } = \frac { v _ { t } - v _ { n } } { R _ { 2 } } + \frac { v _ { t } - A \left( 0 - v _ { n } \right) } { R _ { o } } = \frac { v _ { l } - \frac { R _ { 1 } R _ { i } } { R _ { 1 } R _ { 2 } + R _ { 2 } R _ { i } + R _ { 1 } R _ { i } } v _ { l } } { R _ { 2 } } + \frac { v _ { l } + A \frac { R _ { 1 } R _ { i } } { R _ { 1 } R _ { 2 } + R _ { 2 } R _ { i } + R _ { 1 } R _ { i } } v _ { i } } { R _ { o } } = 1.682 \mathrm {~A}
Rout =vtit=11R1RiR1R2+R2Ri+R1RiR2+1+AR1RiR1R2+R2Ri+R1RiRo=0.5945R _ { \text {out } } = \frac { v _ { t } } { i _ { t } } = \frac { 1 } { \frac { 1 - \frac { R _ { 1 } R _ { i } } { R _ { 1 } R _ { 2 } + R _ { 2 } R _ { i } + R _ { 1 } R _ { i } } } { R _ { 2 } } + \frac { 1 + A \frac { R _ { 1 } R _ { i } } { R _ { 1 } R _ { 2 } + R _ { 2 } R _ { i } + R _ { 1 } R _ { i } } } { R _ { o } } } = 0.5945 clear all;
R1=1000;R23600;R1=10000;R0=600;Vt=1;A=5000;R 1=1000 ; R 2-3600 ; R 1=10000 ; R 0=600 ; V t=1 ; A=5000 ;
syms vn
vn=s0ve(vn/RI+vn/R1+(vnvt)/R2,vn) v n=s 0 \perp v e(v n / R I+v n / R 1+(v n-v t) / R 2, v n)
it(vtvn)/R2+(vtA(0v))/RQ i t-(v t-v n) / R 2+(v t-A *(0-v \cap)) / R Q
Rout =vt/uti
vh=vpa (vn, 1l)
it=vpa (it,1l) (i t, 1 l)
Rout=vpa (Rout, 11)

Answers:
Vn=\mathrm { Vn } =
0.201612903230.20161290323
it ==
1.6819959677
Rout ==
0.594531746320.59453174632

In the circuit shown below, let R1=1kΩ,R2=6kΩ,Ri=4kΩ,R0=500Ω,A=2000,vs=1V,vp=0R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 6 \mathrm { k } \Omega , R _ { i } = 4 \mathrm { k } \Omega , R _ { 0 } = 500 \Omega , A = 2000 , v _ { s } = 1 V , v _ { p } = 0 (a) Write a node equation at node 1 by summing currents leaving node 1 . (b) Write a node equation at node 2 by summing currents leaving node 2 (c) Solve the two node equations to find numerical values of Vn\mathrm { V } _ { \mathrm { n } } and vo\mathrm { v } _ { \mathrm { o } } . (d) Find the value of isi _ { s } through R1R _ { 1 } . Find the input impedance Rin=vs/isR _ { i n } = v _ { s } / i _ { s } .  In the circuit shown below, let  R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 6 \mathrm { k } \Omega , R _ { i } = 4 \mathrm { k } \Omega , R _ { 0 } = 500 \Omega , A = 2000 , v _ { s } = 1 V , v _ { p } = 0  (a) Write a node equation at node 1 by summing currents leaving node 1 . (b) Write a node equation at node 2 by summing currents leaving node 2 (c) Solve the two node equations to find numerical values of  \mathrm { V } _ { \mathrm { n } }  and  \mathrm { v } _ { \mathrm { o } } . (d) Find the value of  i _ { s }  through  R _ { 1 } . Find the input impedance  R _ { i n } = v _ { s } / i _ { s } .

(Essay)
4.8/5
(34)

the circuit shown below, let R1=1kΩ,R2=4kΩ,Ri=3kΩ,Ro=2kΩ,A=1000,vs=1 V,vp=vs\mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 4 \mathrm { k } \Omega , \mathrm { R } _ { \mathrm { i } } = 3 \mathrm { k } \Omega , \mathrm { R } _ { \mathrm { o } } = 2 \mathrm { k } \Omega , \mathrm { A } = 1000 , \mathrm { v } _ { \mathrm { s } } = 1 \mathrm {~V} , \mathrm { v } _ { \mathrm { p } } = \mathrm { v } _ { \mathrm { s } } (a) Write a node equation at node 1 by summing currents away from node 1 . (b) Write a node equation at node 2 by summing currents away from node 2 . (c) Solve the two node equations to find numerical values of vnv _ { n } and vov _ { o } . (d) Find the value of isi _ { s } through RiR _ { i } . Find the input impedance Rin=vs/isR _ { i n } = v _ { s } / i _ { s } .  the circuit shown below, let  \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 4 \mathrm { k } \Omega , \mathrm { R } _ { \mathrm { i } } = 3 \mathrm { k } \Omega , \mathrm { R } _ { \mathrm { o } } = 2 \mathrm { k } \Omega , \mathrm { A } = 1000 , \mathrm { v } _ { \mathrm { s } } = 1 \mathrm {~V} , \mathrm { v } _ { \mathrm { p } } = \mathrm { v } _ { \mathrm { s } }  (a) Write a node equation at node 1 by summing currents away from node 1 . (b) Write a node equation at node 2 by summing currents away from node 2 . (c) Solve the two node equations to find numerical values of  v _ { n }  and  v _ { o } . (d) Find the value of  i _ { s }  through  R _ { i } . Find the input impedance  R _ { i n } = v _ { s } / i _ { s } .

(Essay)
4.8/5
(41)

R1=R3=2kΩ,R2=1kΩ,R4=R5=1kΩ,R6=R7=5kΩ,v2=0.05 V,v1=0.05 V\mathrm { R } _ { 1 } = \mathrm { R } _ { 3 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = \mathrm { R } _ { 5 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 6 } = \mathrm { R } _ { 7 } = 5 \mathrm { k } \Omega , \mathrm { v } _ { 2 } = 0.05 \mathrm {~V} , \mathrm { v } _ { 1 } = - 0.05 \mathrm {~V} in the circuit shown below. Find the numerical values of Vo1,vo2\mathrm { V } _ { \mathrm { o } 1 } , \mathrm { v } _ { \mathrm { o } 2 } , and v03\mathrm { v } _ { 03 } . \mathrm { R } _ { 1 } = \mathrm { R } _ { 3 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = \mathrm { R } _ { 5 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 6 } = \mathrm { R } _ { 7 } = 5 \mathrm { k } \Omega , \mathrm { v } _ { 2 } = 0.05 \mathrm {~V} , \mathrm { v } _ { 1 } = - 0.05 \mathrm {~V}  in the circuit shown below. Find the numerical values of  \mathrm { V } _ { \mathrm { o } 1 } , \mathrm { v } _ { \mathrm { o } 2 } , and  \mathrm { v } _ { 03 } .

(Essay)
4.8/5
(33)

 The circuit shown below generates output signal vo given by \text { The circuit shown below generates output signal vo given by } v0=2v1+3v2v _ { 0 } = 2 v _ { 1 } + 3 v _ { 2 } where v1v _ { 1 } , and v2v _ { 2 } are input signals. Find R1R _ { 1 } and R2R _ { 2 } if R3=R4=6kΩR _ { 3 } = R _ { 4 } = 6 \mathrm { k } \Omega and R5=30kΩR _ { 5 } = 30 \mathrm { k } \Omega . \text { The circuit shown below generates output signal vo given by }   v _ { 0 } = 2 v _ { 1 } + 3 v _ { 2 }  where  v _ { 1 } , and  v _ { 2 }  are input signals. Find  R _ { 1 }  and  R _ { 2 }  if  R _ { 3 } = R _ { 4 } = 6 \mathrm { k } \Omega  and  R _ { 5 } = 30 \mathrm { k } \Omega .

(Essay)
4.8/5
(31)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)