Exam 13: Magnetically Coupled Circuits

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find I1,I2, V1, V2\mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm {~V} _ { 1 } , \mathrm {~V} _ { 2 } the phasors in the circuit shown below.  Find  \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm {~V} _ { 1 } , \mathrm {~V} _ { 2 }   the phasors in the circuit shown below.

Free
(Essay)
4.8/5
(24)
Correct Answer:
Verified

Vs+ZsI1+V1=0V2+ZLI2=0 V1=R1I1+ZL1I1+ZMI2 V2=ZMI1R2I2ZL2I2\begin{array} { l } - \mathrm { V } _ { \mathrm { s } } + \mathrm { Z } _ { \mathrm { s } } \mathrm { I } _ { 1 } + \mathrm { V } _ { 1 } = 0 \\- \mathrm { V } _ { 2 } + \mathrm { Z } _ { \mathrm { L } } \mathrm { I } _ { 2 } = 0 \\\mathrm {~V} _ { 1 } = \mathrm { R } _ { 1 } \mathrm { I } _ { 1 } + \mathrm { Z } _ { \mathrm { L } 1 } \mathrm { I } _ { 1 } + \mathrm { Z } _ { \mathrm { M } } \mathrm { I } _ { 2 } \\\mathrm {~V} _ { 2 } = - \mathrm { Z } _ { \mathrm { M } } \mathrm { I } _ { 1 } - \mathrm { R } _ { 2 } \mathrm { I } _ { 2 } - \mathrm { Z } _ { \mathrm { L } 2 } \mathrm { I } _ { 2 }\end{array} Solving these equations, we obtain I1=5.876111.0143AI2=1.7619122.25AV1=58.681852.0883VV2=18.140293.1954V\begin{array} { l } \mathrm { I } _ { 1 } = 5.8761 \angle 11.0143 ^ { \circ } \mathrm { A } \\\mathrm { I } _ { 2 } = 1.7619 \angle - 122.25 ^ { \circ } \mathrm { A } \\\mathrm { V } _ { 1 } = 58.6818 \angle 52.0883 ^ { \circ } \mathrm { V } \\\mathrm { V } _ { 2 } = 18.1402 \angle - 93.1954 ^ { \circ } \mathrm { V }\end{array} clear all;
ZL1=8j;ZL2=11j;ZM=7j;R1=6;R2=8;Zs=59j;ZL=9+5j;ZMM=abs(ZM)\mathrm { ZL } 1 = 8 j ; \mathrm { ZL } 2 = 11 j ; \mathrm { ZM } = 7 j ; \mathrm { R } 1 = 6 ; \mathrm { R } 2 = 8 ; \mathrm { Zs } = 5 - 9 j ; \mathrm { ZL } = 9 + 5 j ; \mathrm { ZMM } = \mathrm { abs } ( \mathrm { ZM } ) ;
Vm=75;phi=0\mathrm { Vm } = 75 ; \mathrm { phi } = 0 ;
Vs=P2Rd(Vm,phi)\mathrm { Vs } = \mathrm { P } 2 \mathrm { Rd } ( \mathrm { Vm } , \mathrm { phi } )
syms I1 I2 V1 V2
[II2 V1 V2]=solve(Vs+ZsI1+V1,V2+ZLI2,\left[ \begin{array} { l l l l } \mathrm { I } & \mathrm { I } 2 & \mathrm {~V} 1 & \mathrm {~V} 2 \end{array} \right] = \mathrm { solve } \left( - \mathrm { Vs } + \mathrm { Zs } { } ^ { * } \mathrm { I } 1 + \mathrm { V } 1 , - \mathrm { V } 2 + \mathrm { ZL } { } ^ { * } \mathrm { I } 2 , \ldots \right.
V1==R1\mathrm { V } 1 = = \mathrm { R } 1 * I1+ZL1\mathrm { I } 1 + \mathrm { ZL } 1 * I1+ZMI2,\mathrm { I } 1 + \mathrm { ZM } { } ^ { * } \mathrm { I } 2 , \ldots
V2==R2I2ZMI1ZL2I2,\mathrm { V } 2 = = - \mathrm { R } 2 ^ { \star } \mathrm { I } 2 - \mathrm { ZM } { } ^ { * } \mathrm { I } 1 - \mathrm { ZL } 2 ^ { \star } \mathrm { I } 2 , \ldots
I1,I2, V1, V2)\mathrm { I } 1 , \mathrm { I } 2 , \mathrm {~V} 1 , \mathrm {~V} 2 ) ;
I 1p=R2P(I1)1 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { I } 1 ) ;
I2p=R2P(I2);I 2 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { I } 2 ) ;
V1p=R2P(Vl);\mathrm { V } 1 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { Vl } ) ; V2p=R2P(V2)\mathrm { V } 2 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { V } 2 ) ;
V2p=R2P(V2)\mathrm { V } 2 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { V } 2 ) ;
I 1=vpa(I1,6)1 = \operatorname { vpa } ( I 1,6 ) I 1p=vpa(I1p,7)1 \mathrm { p } = \operatorname { vpa } ( I 1 \mathrm { p } , 7 )
I2 = vpa (I2,6)( I 2,6 )
I 2p=vpa (I2p,7)( I 2 \mathrm { p } , 7 )
V1=vpa(V1,6)\mathrm { V } 1 = \operatorname { vpa } ( \mathrm { V } 1,6 )
V1p=vpa(V1p,7)\mathrm { V } 1 \mathrm { p } = \operatorname { vpa } ( \mathrm { V } 1 \mathrm { p } , 7 )
V2=vpa(V2,6)\mathrm { V } 2 = \operatorname { vpa } ( \mathrm { V } 2,6 )
V2p =vpa(V2p,7)= \operatorname { vpa } ( \mathrm { V } 2 \mathrm { p } , 7 )
VO=I2ZL\mathrm { VO } = \mathrm { I } 2 * \mathrm { ZL }
Vop == R2P (Vo)
Vop =vpa(Vop,7)= \operatorname { vpa } ( \operatorname { Vop } , 7 )

Find the Thévenin equivalent circuit to the left of terminals a and b in the circuit shown below. Use the Thévenin equivalent circuit to find the voltage V0 across the load RL Find the Thévenin equivalent circuit to the left of terminals a and b in the circuit shown below. Use the Thévenin equivalent circuit to find the voltage V<sub>0</sub> across the load  R<sub>L</sub>

Free
(Essay)
4.7/5
(36)
Correct Answer:
Verified

Za=R1+ZL3+ZL1=6+j26Zb=ZL2+R2+ZC1=9+j11Vth=Vs×ZMZa=21.9209+j71.6760Vo=Vth×RLZth+RL=15.1058+j40.1490=42.896769.3815V\begin{array} { l } Z _ { \mathrm { a } } = \mathrm { R } _ { 1 } + Z _ { \mathrm { L } 3 } + Z _ { \mathrm { L } 1 } = 6 + \mathrm { j } 26 \\Z _ { \mathrm { b } } = Z _ { \mathrm { L } 2 } + \mathrm { R } _ { 2 } + Z _ { \mathrm { C } 1 } = 9 + \mathrm { j } 11 \\V _ { t h } = V _ { s } \times \frac { Z _ { M } } { Z _ { a } } = 21.9209 + \mathrm { j } 71.6760 \\V _ { o } = V _ { t h } \times \frac { R _ { L } } { Z _ { t h } + R _ { L } } = 15.1058 + \mathrm { j } 40.1490 = 42.8967 \angle 69.3815 ^ { \circ } \mathrm { V }\end{array} clear all;
ZL=19j;ZL2=21j;ZM=16j;R1=6;R2=9;ZL3=7j;ZC1=10j;RL=15;ZMM=abs(ZM)\mathrm { ZL } = 19 \mathrm { j } ; \mathrm { ZL } 2 = 21 \mathrm { j } ; \mathrm { ZM } = 16 \mathrm { j } ; \mathrm { R } 1 = 6 ; \mathrm { R } 2 = 9 ; \mathrm { ZL } 3 = 7 \mathrm { j } ; \mathrm { ZC1 } = - 10 \mathrm { j } ; \mathrm { RL } = 15 ; \mathrm { ZMM } = \mathrm { abs } ( \mathrm { ZM } ) ;
Vm=125;phi=60\mathrm { Vm } = 125 ; \mathrm { phi } = 60 ;
Vs=P2Rd\mathrm { Vs } = \mathrm { P } 2 \mathrm { Rd } (Vm, phi)
Za=R1+ZL3+ZL1\mathrm { Za } = \mathrm { R } 1 + \mathrm { ZL } 3 + \mathrm { ZL } 1
Zb=ZL2+R2+ZCl\mathrm { Zb } = \mathrm { ZL } 2 + \mathrm { R } 2 + \mathrm { ZCl }
Vth =Vs= \mathrm { Vs } * ZM/Za\mathrm { ZM } / \mathrm { Za }
Zth=Zb+ZMM2/Za\mathrm { Zth } = \mathrm { Zb } + \mathrm { ZMM } ^ { \wedge } 2 / \mathrm { Za }
Voa =VthRL/(Zth+RL)= \mathrm { Vth } \star \mathrm { RL } / ( \mathrm { Zth } + \mathrm { RL } )
Voap=R2P (Voa)

Find I1,I2, V1, V2\mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm {~V} _ { 1 } , \mathrm {~V} _ { 2 } the phasors in the circuit shown below.  Find  \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm {~V} _ { 1 } , \mathrm {~V} _ { 2 }   the phasors in the circuit shown below.

Free
(Essay)
4.9/5
(34)
Correct Answer:
Verified

Vs+R1I1+V1=0V2R2I2ZL3I2=0 V1=ZL1I1ZMI2 V2=ZMI1+ZL2I2\begin{array} { l } - V _ { \mathrm { s } } + \mathrm { R } _ { 1 } \mathrm { I } _ { 1 } + \mathrm { V } _ { 1 } = 0 \\- \mathrm { V } _ { 2 } - \mathrm { R } _ { 2 } \mathrm { I } _ { 2 } - \mathrm { Z } _ { \mathrm { L } 3 } \mathrm { I } _ { 2 } = 0 \\\mathrm {~V} _ { 1 } = \mathrm { Z } _ { \mathrm { L } 1 } \mathrm { I } _ { 1 } - \mathrm { Z } _ { \mathrm { M } } \mathrm { I } _ { 2 } \\\mathrm {~V} _ { 2 } = - \mathrm { Z } _ { \mathrm { M } } \mathrm { I } _ { 1 } + \mathrm { Z } _ { \mathrm { L } 2 } \mathrm { I } _ { 2 }\end{array}
Solving these equations, we obtain
I1=4.594740.5779AI2=1.424810.8331AV1=30.776342.8276VV2=12.7435164.268V\begin{array} { l } \mathrm { I } _ { 1 } = 4.5947 \angle - 40.5779 ^ { \circ } \mathrm { A } \\\mathrm { I } _ { 2 } = 1.4248 \angle - 10.8331 ^ { \circ } \mathrm { A } \\\mathrm { V } _ { 1 } = 30.7763 \angle 42.8276 ^ { \circ } \mathrm { V } \\\mathrm { V } _ { 2 } = 12.7435 \angle - 164.268 ^ { \circ } \mathrm { V }\end{array} clear all;
ZL18j;ZL210j;2M=5j;R17;R28;ZL34j;Vm=47;phi0\mathrm { ZL } 1 - 8 j ; Z L 2 - 10 j ; 2 M = 5 j ; \mathrm { R } 1 - 7 ; \mathrm { R } 2 - 8 ; \mathrm { ZL } 3 - 4 j ; \mathrm { Vm } = 47 ; \mathrm { ph } i - 0 ;
Vs=P2Rd\mathrm { Vs } = \mathrm { P } 2 \mathrm { Rd } (Vm, phi)
syms I1 I2 V1 V2
[I1,I2,V1,V2]=solve{Vs+R1I1+V1,V2R2I2ZL3I2,[ I 1 , I 2 , V 1 , V 2 ] = s o l v e \{ - V s + R 1 * I 1 + V 1 , - V 2 - R 2 * I 2 - Z L 3 * I 2 , \ldots
V1==ZL1\mathrm { V } 1 = = \mathrm { ZL } 1 * I1-ZM* I2, V2==ZMI1+ZL2I2)\left. \mathrm { I } 2 , \mathrm {~V} 2 = = - \mathrm { ZM } ^ { * } \mathrm { I } 1 + \mathrm { ZL } 2 ^ { * } \mathrm { I } 2 \right) ;
I1p=R2P(I1)I 1 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { I } 1 ) ;
I2P=R2PI2;I 2 \mathrm { P } = \mathrm { R } 2 \mathrm { P } \langle \mathrm { I } 2 \rangle ;
V1p=R2P(V1);\mathrm { V } 1 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { V } 1 ) ;
V2p=R2P(V2);V 2 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { V } 2 ) ;
Il=vpa(I1,6)I l = \operatorname { vpa } ( I 1,6 ) I1p=vpa(I,p,7\mathrm { I } 1 \mathrm { p } = \operatorname { vpa } ( \mathrm { I } , \mathrm { p } , 7
I 1p=vpa(11p1 p = \operatorname { vpa } ( 11 \mathrm { p } , I2=vpa (I2,6)( I 2,6 )
I2p=vpa (12p,7( 12 \mathrm { p } , 7 \rangle
V1=vpa(V1,6)V 1 = \operatorname { vpa } ( V 1,6 )
V1p=vpaV1p,7\mathrm { V } 1 \mathrm { p } = \operatorname { vpa } \langle \mathrm { V } 1 \mathrm { p } , 7 \rangle
V2=vpa(V2,6)\mathrm { V } 2 = \mathrm { vpa } ( \mathrm { V } 2,6 )
V2p=vpaV2p,7\mathrm { V } 2 \mathrm { p } = \mathrm { vpa } \langle \mathrm { V } 2 \mathrm { p } , 7 \rangle

Find Rin \mathrm { R } _ { \text {in } } in the circuit shown below.  Find  \mathrm { R } _ { \text {in } }  in the circuit shown below.

(Essay)
4.9/5
(33)

Find I1,I2, V1, V2\mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm {~V} _ { 1 } , \mathrm {~V} _ { 2 } the phasors in the circuit shown below.  Find  \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm {~V} _ { 1 } , \mathrm {~V} _ { 2 }  the phasors in the circuit shown below.

(Essay)
4.8/5
(30)

Find V1, V2, V3,I1,I2,Ia\mathrm { V } _ { 1 } , \mathrm {~V} _ { 2 } , \mathrm {~V} _ { 3 } , \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm { I } _ { \mathrm { a } } in the circuit shown below when n = 6.  Find  \mathrm { V } _ { 1 } , \mathrm {~V} _ { 2 } , \mathrm {~V} _ { 3 } , \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm { I } _ { \mathrm { a } }  in the circuit shown below when n = 6.

(Essay)
4.8/5
(30)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)