Exam 11: AC Power

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Given the following voltage and current on the load, find the power factor, average power, reactive power, complex power, and apparent power. Also, find the equivalent impedance, equivalent resistance, and equivalent inductance of the load. Draw the phasors for P, Q, and S. The voltage and current are peak values. v(t)=140cos(2π60t+30)V,i(t)=12cos(2π60t+55)Av ( t ) = 140 \cos \left( 2 \pi 60 t + 30 ^ { \circ } \right) \mathrm { V } , i ( t ) = 12 \cos \left( 2 \pi 60 t + 55 ^ { \circ } \right) \mathrm { A }

Free
(Essay)
4.8/5
(34)
Correct Answer:
Verified

The difference in phase angle is
θ=θvθi=3055=25\theta = \theta _ { \mathrm { v } } - \theta _ { \mathrm { i } } = 30 ^ { \circ } - 55 ^ { \circ } = - 25 ^ { \circ }
The power factor is given by
pf=cos(θ)=cos(25)=0.906308\mathrm { pf } = \cos ( \theta ) = \cos \left( - 25 ^ { \circ } \right) = 0.906308
The average power is
P=VmIm2pf=761.29854 WP = \frac { V _ { m } I _ { m } } { 2 } p f = 761.29854 \mathrm {~W}
The reactive power is
Q=VmIm2sin(θ)=354.99934VARQ = \frac { V _ { m } I _ { m } } { 2 } \sin ( \theta ) = - 354.99934 \mathrm { VAR }
The complex power is given by
S=P+jQ=761.29854j354.99934=84025VA\mathbf { S } = \mathrm { P } + \mathrm { jQ } = 761.29854 - \mathrm { j } 354.99934 = 840 \angle - 25 ^ { \circ } \mathrm { VA }
The apparent power is given by
S=840VA| \mathrm { S } | = 840 \mathrm { VA }  The difference in phase angle is  \theta = \theta _ { \mathrm { v } } - \theta _ { \mathrm { i } } = 30 ^ { \circ } - 55 ^ { \circ } = - 25 ^ { \circ }  The power factor is given by  \mathrm { pf } = \cos ( \theta ) = \cos \left( - 25 ^ { \circ } \right) = 0.906308  The average power is  P = \frac { V _ { m } I _ { m } } { 2 } p f = 761.29854 \mathrm {~W}  The reactive power is  Q = \frac { V _ { m } I _ { m } } { 2 } \sin ( \theta ) = - 354.99934 \mathrm { VAR }  The complex power is given by  \mathbf { S } = \mathrm { P } + \mathrm { jQ } = 761.29854 - \mathrm { j } 354.99934 = 840 \angle - 25 ^ { \circ } \mathrm { VA }  The apparent power is given by  | \mathrm { S } | = 840 \mathrm { VA }     \begin{array}{l} \mathbf{Z}=\mathbf{V} / \mathbf{I}=10.5736-\mathrm{j} 4.93055 \Omega \\ \mathrm{R}=10.5736 \Omega \\ \mathrm{X}=-4.93055 \Omega \\ \mathrm{C}=-1 /(\omega \mathrm{X})=537.98954 \mathrm{uF} \end{array}
Z=V/I=10.5736j4.93055ΩR=10.5736ΩX=4.93055ΩC=1/(ωX)=537.98954uF\begin{array}{l}\mathbf{Z}=\mathbf{V} / \mathbf{I}=10.5736-\mathrm{j} 4.93055 \Omega \\\mathrm{R}=10.5736 \Omega \\\mathrm{X}=-4.93055 \Omega \\\mathrm{C}=-1 /(\omega \mathrm{X})=537.98954 \mathrm{uF}\end{array}

Given the following voltage and current on the load, find the power factor, average power, reactive power, complex power, and apparent power. Also, find the equivalent impedance, equivalent resistance, and equivalent inductance of the load. Draw the phasors for P, Q, and S. The voltage and current are peak values. v(t)=150cos(2π60t+120)V,i(t)=10cos(2π60t+85)Av ( t ) = 150 \cos \left( 2 \pi 60 t + 120 ^ { \circ } \right) \mathrm { V } , i ( t ) = 10 \cos \left( 2 \pi 60 t + 85 ^ { \circ } \right) \mathrm { A }

Free
(Essay)
4.9/5
(35)
Correct Answer:
Verified

The difference in phase angle is
θ=θvθi=12085=35\theta = \theta _ { \mathrm { v } } - \theta _ { \mathrm { i } } = 120 ^ { \circ } - 85 ^ { \circ } = 35 ^ { \circ }
The power factor is given by
 pf =cos(θ)=cos(35)=0.819152\text { pf } = \cos ( \theta ) = \cos \left( 35 ^ { \circ } \right) = 0.819152
The average power is
P=VmIm2pf=150×102×0.819152=614.364 WP = \frac { V _ { m } I _ { m } } { 2 } p f = \frac { 150 \times 10 } { 2 } \times 0.819152 = 614.364 \mathrm {~W}
The reactive power is
Q=VmIm2sin(θ)=150×102sin(35)=430.1823VARQ = \frac { V _ { m } I _ { m } } { 2 } \sin ( \theta ) = \frac { 150 \times 10 } { 2 } \sin \left( 35 ^ { \circ } \right) = 430.1823 \mathrm { VAR }
The complex power is given by
S=P+jQ=614.364+j430.1823=75035VA\mathbf { S } = \mathrm { P } + \mathrm { jQ } = 614.364 + \mathrm { j } 430.1823 = 750 \angle 35 ^ { \circ } \mathrm { VA }
The apparent power is given by
S=750VA| \mathrm { S } | = 750 \mathrm { VA }
 The difference in phase angle is  \theta = \theta _ { \mathrm { v } } - \theta _ { \mathrm { i } } = 120 ^ { \circ } - 85 ^ { \circ } = 35 ^ { \circ }  The power factor is given by  \text { pf } = \cos ( \theta ) = \cos \left( 35 ^ { \circ } \right) = 0.819152  The average power is  P = \frac { V _ { m } I _ { m } } { 2 } p f = \frac { 150 \times 10 } { 2 } \times 0.819152 = 614.364 \mathrm {~W}  The reactive power is  Q = \frac { V _ { m } I _ { m } } { 2 } \sin ( \theta ) = \frac { 150 \times 10 } { 2 } \sin \left( 35 ^ { \circ } \right) = 430.1823 \mathrm { VAR }  The complex power is given by  \mathbf { S } = \mathrm { P } + \mathrm { jQ } = 614.364 + \mathrm { j } 430.1823 = 750 \angle 35 ^ { \circ } \mathrm { VA }  The apparent power is given by  | \mathrm { S } | = 750 \mathrm { VA }      \begin{array} { l }  \mathbf { Z } = \mathbf { V } / \mathbf { I } = 12.2873 + \mathrm { j } 8.6036 \Omega \\ \mathrm { R } = 12.2873 \Omega \\ \mathrm { X } = 8.6036 \Omega \\ \mathrm { L } = \mathrm { X } / \omega = \mathrm { X } / ( 2 \pi \mathrm { f } ) = 22.8219 \mathrm { mH } \end{array}
Z=V/I=12.2873+j8.6036ΩR=12.2873ΩX=8.6036ΩL=X/ω=X/(2πf)=22.8219mH\begin{array} { l } \mathbf { Z } = \mathbf { V } / \mathbf { I } = 12.2873 + \mathrm { j } 8.6036 \Omega \\\mathrm { R } = 12.2873 \Omega \\\mathrm { X } = 8.6036 \Omega \\\mathrm { L } = \mathrm { X } / \omega = \mathrm { X } / ( 2 \pi \mathrm { f } ) = 22.8219 \mathrm { mH }\end{array}

A load consists of a parallel connection of paths as shon below. R1L1,R2L2, and R3C1R _ { 1 } - L _ { 1 } , R _ { 2 } - L _ { 2 } \text {, and } R _ { 3 } - C _ { 1 } Assume R1=60Ω,R2=55Ω,R3=50Ω,L1=55mH,L2=75mH,C1=200μF,Vrms=105\mathrm { R } _ { 1 } = 60 \Omega , \mathrm { R } _ { 2 } = 55 \Omega , \mathrm { R } _ { 3 } = 50 \Omega , \mathrm { L } _ { 1 } = 55 \mathrm { mH } , \mathrm { L } _ { 2 } = 75 \mathrm { mH } , \mathrm { C } _ { 1 } = 200 \mu \mathrm { F } , \left| \mathbf { V } _ { \mathrm { rms } } \right| = 105 V, f = 60 Hz. Find the complex power, average power, reactive power, apparent power, and power factor of each path. Also, find the complex power, average power, reactive power, apparent power, and power factor of the entire load.  A load consists of a parallel connection of paths as shon below.   R _ { 1 } - L _ { 1 } , R _ { 2 } - L _ { 2 } \text {, and } R _ { 3 } - C _ { 1 }    Assume  \mathrm { R } _ { 1 } = 60 \Omega , \mathrm { R } _ { 2 } = 55 \Omega , \mathrm { R } _ { 3 } = 50 \Omega , \mathrm { L } _ { 1 } = 55 \mathrm { mH } , \mathrm { L } _ { 2 } = 75 \mathrm { mH } , \mathrm { C } _ { 1 } = 200 \mu \mathrm { F } , \left| \mathbf { V } _ { \mathrm { rms } } \right| = 105  V, f = 60 Hz. Find the complex power, average power, reactive power, apparent power, and power factor of each path. Also, find the complex power, average power, reactive power, apparent power, and power factor of the entire load.

Free
(Essay)
4.8/5
(40)
Correct Answer:
Verified

ZL1=jωL1=j20.7345Ω,ZL2=jωL2=j28.2743Ω,ZC1=1/(jωC1)=j13.2629ΩZ1=R1+ZL1=60+j20.7345ΩZ2=R2+ZL2=55+j28.2743ΩZ3=R3+ZC1=50j13.2629ΩS1=Vrus 2Z1Z12=164.14718+j56.7251934=173.6722119.06388VAP1=164.14718 W,Q1=56.7251934VAR,S1=173.67221VA,pff1=cos(19.06388)=0.9452S2=Vrms 2Z2Z22=158.5527+j81.5086=178.276827.2067VAP2=158.5527 W,Q2=81.5086VAR,S2=178.2768VA,pf2=cos(27.2067)=0.8894S3=Vrus 2Z3Z32=206.0051j54.6445=213.129414.8561VAP3=206.0051 W,Q3=54.6445VAR,S3=213.1294VA,pf3=cos(14.8561)=0.9666S=S1+S2+S3=528.705+j83.5892=535.2728.9842VAP2=705 W,Q=83.5892VAR,S=535.272VA,pf2=cos(8.9842)=0.9877\begin{array} { l } \mathrm { Z } _ { \mathrm { L } 1 } = \mathrm { j } \omega \mathrm { L } _ { 1 } = \mathrm { j } 20.7345 \Omega , \mathrm { Z } _ { \mathrm { L } 2 } = \mathrm { j } \omega \mathrm { L } _ { 2 } = \mathrm { j } 28.2743 \Omega , \mathrm { Z } _ { \mathrm { C } 1 } = 1 / \left( \mathrm { j } \omega \mathrm { C } _ { 1 } \right) = - \mathrm { j } 13.2629 \Omega \\\mathbf { Z } _ { 1 } = \mathrm { R } _ { 1 } + \mathrm { Z } _ { \mathrm { L } 1 } = 60 + \mathrm { j } 20.7345 \Omega \\\mathbf { Z } _ { 2 } = \mathrm { R } _ { 2 } + \mathrm { Z } _ { \mathrm { L } 2 } = 55 + \mathrm { j } 28.2743 \Omega \\\mathbf { Z } _ { 3 } = \mathrm { R } _ { 3 } + \mathrm { Z } _ { \mathrm { C } 1 } = 50 - \mathrm { j } 13.2629 \Omega \\\mathbf { S } _ { 1 } = \frac { \left| \boldsymbol { V } _ { \text {rus } } \right| ^ { 2 } \mathbf { Z } _ { 1 } } { \left| \mathbf { Z } _ { 1 } \right| ^ { 2 } } = 164.14718 + \mathrm { j } 56.7251934 = 173.67221 \angle 19.06388 ^ { \circ } \mathrm { VA } \\\mathbf { P } _ { 1 } = 164.14718 \mathrm {~W} , \mathrm { Q } _ { 1 } = 56.7251934 \mathrm { VAR } , \left| \mathbf { S } _ { 1 } \right| = 173.67221 \mathrm { VA } , \mathrm { pf } \mathrm { f } _ { 1 } = \cos \left( 19.06388 ^ { \circ } \right) = 0.9452 \\\mathbf { S } _ { 2 } = \frac { \left| \boldsymbol { V } _ { \text {rms } } \right| ^ { 2 } \mathbf { Z } _ { 2 } } { \left| \mathbf { Z } _ { 2 } \right| ^ { 2 } } = 158.5527 + \mathrm { j } 81.5086 = 178.2768 \angle 27.2067 ^ { \circ } \mathrm { VA } \\\mathrm { P } _ { 2 } = 158.5527 \mathrm {~W} , \mathrm { Q } _ { 2 } = 81.5086 \mathrm { VAR } , \left| \mathbf { S } _ { 2 } \right| = 178.2768 \mathrm { VA } , \mathrm { pf } _ { 2 } = \cos \left( 27.2067 ^ { \circ } \right) = 0.8894 \\\mathbf { S } _ { 3 } = \frac { \left| \boldsymbol { V } _ { \text {rus } } \right| ^ { 2 } \mathbf { Z } _ { 3 } } { \left| \mathbf { Z } _ { 3 } \right| ^ { 2 } } = 206.0051 - \mathrm { j } 54.6445 = 213.1294 \angle - 14.8561 ^ { \circ } \mathrm { VA } \\\mathbf { P } _ { 3 } = 206.0051 \mathrm {~W} , \mathrm { Q } _ { 3 } = - 54.6445 \mathrm { VAR } , \left| \mathbf { S } _ { 3 } \right| = 213.1294 \mathrm { VA } , \mathrm { pf } _ { 3 } = \cos \left( - 14.8561 ^ { \circ } \right) = 0.9666 \\\mathbf { S } = \mathbf { S } _ { 1 } + \mathbf { S } _ { 2 } + \mathbf { S } _ { 3 } = 528.705 + \mathrm { j } 83.5892 = 535.272 \angle 8.9842 ^ { \circ } \mathrm { VA } \\\mathbf { P } _ { 2 } = 705 \mathrm {~W} , \mathrm { Q } = 83.5892 \mathrm { VAR } , | \mathbf { S } | = 535.272 \mathrm { VA } , \mathrm { pf } ^ { 2 } = \cos \left( 8.9842 ^ { \circ } \right) = 0.9877\end{array} Alternate method for finding S: Za=Z1Z2Z3=20.3443+j3.2165ΩSa=Vrms2ZaZa2=528.705+j83.5892=535.2728.9842VA\begin{array} { l } \mathrm { Z } _ { \mathrm { a } } = \mathrm { Z } _ { 1 } \left\| \mathrm { Z } _ { 2 } \right\| \mathrm { Z } _ { 3 } = 20.3443 + \mathrm { j } 3.2165 \Omega \\\mathbf { S } _ { a } = \frac { \left| \boldsymbol { V } _ { r m s } \right| ^ { 2 } \mathbf { Z } _ { a } } { \left| \mathbf { Z } _ { a } \right| ^ { 2 } } = 528.705 + \mathrm { j } 83.5892 = 535.272 \angle 8.9842 ^ { \circ } \mathrm { VA }\end{array}

Let the voltage across a load be Vrms=53060V\mathbf { V } _ { \mathrm { rms } } = 530 \angle 60 ^ { \circ } \mathrm { V } Irms \mathbf { I } _ { \text {rms } } . Find the coplex power, apparent power, average power, reactive power, and =8.530A= 8.5 \angle 30 ^ { \circ } \mathrm { A } power factor. Also, find the equivalent impedance, equivalent resistance, and equivalent inductance of the load. Draw the phasors for P,Q, and S.f=60 HzP , Q , \text { and } S . f = 60 \mathrm {~Hz}

(Essay)
5.0/5
(37)

A load consists of a parallel connection of paths as shon below. R1L1,R2L2, and R3C1\mathrm { R } _ { 1 } - \mathrm { L } _ { 1 } , \mathrm { R } _ { 2 } - \mathrm { L } _ { 2 } \text {, and } \mathrm { R } _ { 3 } - \mathrm { C } _ { 1 } Assume , R1=80Ω,R2=95Ω,R3=75Ω,L1=65mH,L2=85mH,C1=250μF,Irms=20 A\mathrm { R } _ { 1 } = 80 \Omega , \mathrm { R } _ { 2 } = 95 \Omega , \mathrm { R } _ { 3 } = 75 \Omega , \mathrm { L } _ { 1 } = 65 \mathrm { mH } , \mathrm { L } _ { 2 } = 85 \mathrm { mH } , \mathrm { C } _ { 1 } = 250 \mu \mathrm { F } , \left| \mathbf { I } _ { \mathrm { rms } } \right| = 20 \mathrm {~A} = 60 Hz. Find the complex power, average power, reactive power, apparent power, and power factor of each path. Also, find the complex power, average power, reactive power, apparent power, and power factor of the entire load.  A load consists of a parallel connection of paths as shon below.  \mathrm { R } _ { 1 } - \mathrm { L } _ { 1 } , \mathrm { R } _ { 2 } - \mathrm { L } _ { 2 } \text {, and } \mathrm { R } _ { 3 } - \mathrm { C } _ { 1 }  Assume ,   \mathrm { R } _ { 1 } = 80 \Omega , \mathrm { R } _ { 2 } = 95 \Omega , \mathrm { R } _ { 3 } = 75 \Omega , \mathrm { L } _ { 1 } = 65 \mathrm { mH } , \mathrm { L } _ { 2 } = 85 \mathrm { mH } , \mathrm { C } _ { 1 } = 250 \mu \mathrm { F } , \left| \mathbf { I } _ { \mathrm { rms } } \right| = 20 \mathrm {~A}  = 60 Hz. Find the complex power, average power, reactive power, apparent power, and power factor of each path. Also, find the complex power, average power, reactive power, apparent power, and power factor of the entire load.

(Essay)
4.8/5
(29)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)