Exam 7: RL and RC Circuits

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The switch in the circuit shown below has been opened for a long time before it is closed at t=0t = 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=1kΩ,R2=2kΩ,R3=2R _ { 1 } = 1 k \Omega , R _ { 2 } = 2 k \Omega , R _ { 3 } = 2 kΩ,R4=2kΩ,Is=5 mA, Vs=6.4 V, L=40mH\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 5 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6.4 \mathrm {~V} , \mathrm {~L} = 40 \mathrm { mH } .  The switch in the circuit shown below has been opened for a long time before it is closed at  t = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 1 k \Omega , R _ { 2 } = 2 k \Omega , R _ { 3 } = 2   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 5 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6.4 \mathrm {~V} , \mathrm {~L} = 40 \mathrm { mH } .

Free
(Essay)
4.7/5
(37)
Correct Answer:
Verified

i(0)=I0=Is×R1/(R1+R2+R3)=1 mA\mathrm { i } ( 0 ) = \mathrm { I } _ { 0 } = \mathrm { Is } \times \mathrm { R } _ { 1 } / \left( \mathrm { R } _ { 1 } + \mathrm { R } _ { 2 } + \mathrm { R } _ { 3 } \right) = 1 \mathrm {~mA}
From Is,
Rb=R2+(R3R4)=3kΩIinfl=[Is×R1/(R1+Rb)]×R3/(R3+R4)=0.625 mA\begin{array} { l } \mathrm { R } _ { \mathrm { b } } = \mathrm { R } _ { 2 } + \left( \mathrm { R } _ { 3 } \| \mathrm { R } _ { 4 } \right) = 3 \mathrm { k } \Omega \\\mathrm { I } _ { \mathrm { infl } } = \left[ \mathrm { I } _ { \mathrm { s } } \times \mathrm { R } _ { 1 } / \left( \mathrm { R } _ { 1 } + \mathrm { R } _ { \mathrm { b } } \right) \right] \times \mathrm { R } _ { 3 } / \left( \mathrm { R } _ { 3 } + \mathrm { R } _ { 4 } \right) = 0.625 \mathrm {~mA}\end{array}
From V Vs\mathrm { V } _ { \mathrm { s } }
Ra=R3(R1+R2)=1.2kΩIinf 2=[Vs×Ra/(Ra+R4)]/R3=1.2 mAIinf =Iinfl +Iinf 2=1.825 mAReq =R3+[R4(R2+R1)]=3.2kΩτ=L/Req =12.5μs,1/τ=80000(1/s)i(t)=[Iinf +(I0Iinf )e80000t]u(t)=[1.825+(11.825)e80000t]u(t)=[1.8250.825e80000t]u(t)mA\begin{array} { l } R _ { a } = R _ { 3 } \| \left( R _ { 1 } + R _ { 2 } \right) = 1.2 \mathrm { k } \Omega \\I _ { \text {inf } 2 } = \left[ V _ { \mathrm { s } } \times R _ { a } / \left( R _ { a } + R _ { 4 } \right) \right] / R _ { 3 } = 1.2 \mathrm {~mA} \\I _ { \text {inf } } = I _ { \text {infl } } + I _ { \text {inf } 2 } = 1.825 \mathrm {~mA} \\R _ { \text {eq } } = R _ { 3 } + \left[ R _ { 4 } \| \left( R _ { 2 } + R _ { 1 } \right) \right] = 3.2 \mathrm { k } \Omega \\\tau = L / R _ { \text {eq } } = 12.5 \mu \mathrm { s } , 1 / \tau = 80000 ( 1 / \mathrm { s } ) \\\mathrm { i } ( \mathrm { t } ) = \left[ \mathrm { I } _ { \text {inf } } + \left( \mathrm { I } _ { 0 } - \mathrm { I } _ { \text {inf } } \right) \mathrm { e } ^ { - 80000 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) = \left[ 1.825 + ( 1 - 1.825 ) \mathrm { e } ^ { - 80000 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) \\= \left[ 1.825 - 0.825 \mathrm { e } ^ { - 80000 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) \mathrm { mA }\end{array}

switch 1 in the circuit shown below has been closed for a long time before it is opened at t = 0 and the switch 2 has been opened for a long time before it is closed at t = 0. Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=6kΩ,R2=3kΩ,R3=1kΩ,R4=2kΩ\mathrm { R } _ { 1 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , R5=1kΩ,Is=1 mA, Vs=6 V,C=0.4μF\mathrm { R } _ { 5 } = 1 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 1 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { C } = 0.4 \mu \mathrm { F } .  switch 1 in the circuit shown below has been closed for a long time before it is opened at t = 0 and the switch 2 has been opened for a long time before it is closed at t = 0. Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega ,  \mathrm { R } _ { 5 } = 1 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 1 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { C } = 0.4 \mu \mathrm { F } .

Free
(Essay)
4.7/5
(36)
Correct Answer:
Verified

v(0)=V0=(R3+R4)×Is×R1/(R1+R2+R3+R4)=1.5 Vv()=Vinf =Vs×R4/(R4+R5)=4 VReq=R3+(R4R5)=1.6667kΩτ=Req C=0.0006667 s,1/τ=1500(1/s)v(t)=[Vinf +(V0Vinf )e2500t]u(t)=[4+(1.54)e1500t]u(t)=[42.5e1500t]u(t)V\begin{array} { l } \mathrm { v } ( 0 ) = \mathrm { V } _ { 0 } = \left( \mathrm { R } _ { 3 } + \mathrm { R } _ { 4 } \right) \times \mathrm { I } _ { \mathrm { s } } \times \mathrm { R } _ { 1 } / \left( \mathrm { R } _ { 1 } + \mathrm { R } _ { 2 } + \mathrm { R } _ { 3 } + \mathrm { R } _ { 4 } \right) = 1.5 \mathrm {~V} \\\mathrm { v } ( \infty ) = \mathrm { V } _ { \text {inf } } = \mathrm { V } _ { \mathrm { s } } \times \mathrm { R } _ { 4 } / \left( \mathrm { R } _ { 4 } + \mathrm { R } _ { 5 } \right) = 4 \mathrm {~V} \\\mathrm { R } _ { \mathrm { eq } } = \mathrm { R } _ { 3 } + \left( \mathrm { R } _ { 4 } \| \mathrm { R } _ { 5 } \right) = 1.6667 \mathrm { k } \Omega \\\tau = \mathrm { R } _ { \text {eq } } \mathrm { C } = 0.0006667 \mathrm {~s} , 1 / \tau = 1500 ( 1 / \mathrm { s } ) \\\mathrm { v } ( \mathrm { t } ) = \left[ \mathrm { V } _ { \text {inf } } + \left( \mathrm { V } _ { 0 } - \mathrm { V } _ { \text {inf } } \right) \mathrm { e } ^ { - 2500 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) = \left[ 4 + ( 1.5 - 4 ) \mathrm { e } ^ { - 1500 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) \\= \left[ 4 - 2.5 \mathrm { e } ^ { - 1500 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) \mathrm { V }\end{array}

The switch in the circuit shown below has been opened for a long time before it is closed at t=0t = 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=1kΩ,R2=1kΩ,R3=2R _ { 1 } = 1 k \Omega , R _ { 2 } = 1 k \Omega , R _ { 3 } = 2 kΩ,R4=2kΩ,Is=6 mA, Vs=6 V, L=50mH\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 6 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm {~L} = 50 \mathrm { mH } .  The switch in the circuit shown below has been opened for a long time before it is closed at  t = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 1 k \Omega , R _ { 2 } = 1 k \Omega , R _ { 3 } = 2   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 6 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm {~L} = 50 \mathrm { mH } .

Free
(Essay)
4.7/5
(38)
Correct Answer:
Verified

Ra=(R2+R1)R3=1kΩ\mathrm { R } _ { \mathrm { a } } = \left( \mathrm { R } _ { 2 } + \mathrm { R } _ { 1 } \right) \| \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega
i(0)=I0=[Vs×Ra/(R4+Ra)]/R3=1 mA\mathrm { i } ( 0 ) = \mathrm { I } _ { 0 } = \left[ \mathrm { V } _ { \mathrm { s } } \times \mathrm { R } _ { \mathrm { a } } / \left( \mathrm { R } _ { 4 } + \mathrm { R } _ { \mathrm { a } } \right) \right] / \mathrm { R } 3 = 1 \mathrm {~mA}
From Vs\mathrm { V } _ { \mathrm { s } } ,
Iinfl =1 mA\mathrm { I } _ { \text {infl } } = 1 \mathrm {~mA}
From Is\mathrm { I } _ { \mathrm { s } } ,
Rb=R3R4=1kΩ\mathrm { R } _ { \mathrm { b } } = \mathrm { R } _ { 3 } \| \mathrm { R } _ { 4 } = 1 \mathrm { k } \Omega
Rc=R2+Rb=2kΩ\mathrm { R } _ { \mathrm { c } } = \mathrm { R } _ { 2 } + \mathrm { R } _ { \mathrm { b } } = 2 \mathrm { k } \Omega
IR2(0)=IS×R1/(R1+Rc)=2 mA\mathrm { I } _ { \mathrm { R } 2 } ( 0 ) = \mathrm { I } _ { \mathrm { S } } \times \mathrm { R } _ { 1 } / \left( \mathrm { R } _ { 1 } + \mathrm { R } _ { \mathrm { c } } \right) = 2 \mathrm {~mA}
Iinf 2=IR2(0)×R4/(R3+R4)=1mAI _ { \text {inf } 2 } = I _ { R 2 } ( 0 ) \times R _ { 4 } / \left( R _ { 3 } + R _ { 4 } \right) = 1 m A
Iinf=Iinf1+Iinf2=2 mA\mathrm { I } _ { \mathrm { inf } } = \mathrm { I } _ { \mathrm { inf } 1 } + \mathrm { I } _ { \mathrm { inf } 2 } = 2 \mathrm {~mA}
Req =R3+[R4(R2+R1)]=3kΩR _ { \text {eq } } = R _ { 3 } + \left[ R _ { 4 } \| \left( R _ { 2 } + R _ { 1 } \right) \right] = 3 \mathrm { k } \Omega
τ=L/Req =16.6667μs,1/τ=60000(1/s)\tau = \mathrm { L } / \mathrm { R } _ { \text {eq } } = 16.6667 \mu \mathrm { s } , 1 / \tau = 60000 ( 1 / \mathrm { s } )
i(t)=[Iinf +(I0Iinf )e60000t]u(t)=[2+(12)e60000t]u(t)\mathrm { i } ( \mathrm { t } ) = \left[ \mathrm { I } _ { \text {inf } } + \left( \mathrm { I } _ { 0 } - \mathrm { I } _ { \text {inf } } \right) \mathrm { e } ^ { - 60000 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) = \left[ 2 + ( 1 - 2 ) \mathrm { e } ^ { - 60000 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) =[2e60000t]u(t)mA= \left[ 2 - \mathrm { e } ^ { - 60000 \mathrm { t } } \right] \mathrm { u } ( \mathrm { t } ) \mathrm { mA }

the switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=3kΩ,R2=1kΩ,Is=2 mAR _ { 1 } = 3 \mathrm { k } \Omega , R _ { 2 } = 1 \mathrm { k } \Omega , I _ { s } = 2 \mathrm {~mA} , L=120mH\mathrm { L } = 120 \mathrm { mH } .  the switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 3 \mathrm { k } \Omega , R _ { 2 } = 1 \mathrm { k } \Omega , I _ { s } = 2 \mathrm {~mA} ,  \mathrm { L } = 120 \mathrm { mH } .

(Essay)
4.7/5
(27)

switch in the circuit shown below has been opened for a long time before it is closed at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=8kΩ,R2=4kΩ,R3=8\mathrm { R } _ { 1 } = 8 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 4 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 8 kΩ,R4=12kΩ,R5=6kΩ,Is=2.4 mA, Vs=13.5 V,C=0.05μF\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 12 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 6 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 2.4 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 13.5 \mathrm {~V} , \mathrm { C } = 0.05 \mu \mathrm { F } .  switch in the circuit shown below has been opened for a long time before it is closed at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 8 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 4 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 8   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 12 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 6 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 2.4 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 13.5 \mathrm {~V} , \mathrm { C } = 0.05 \mu \mathrm { F } .

(Essay)
4.8/5
(30)

The switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=2.4kΩ,R2=9kΩ,R3=6\mathrm { R } _ { 1 } = 2.4 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 9 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 6 kΩ,R4=2kΩ,Vs=6 V,C=0.5μF\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { V } _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { C } = 0.5 \mu \mathrm { F } .  The switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 2.4 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 9 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 6   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { V } _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { C } = 0.5 \mu \mathrm { F } .

(Essay)
4.8/5
(40)

the switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=3kΩ,R2=5kΩ,R3=2\mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2 kΩ,Is=4 mA,C=0.3μF\mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 4 \mathrm {~mA} , \mathrm { C } = 0.3 \mu \mathrm { F } .  the switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2   \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 4 \mathrm {~mA} , \mathrm { C } = 0.3 \mu \mathrm { F } .

(Essay)
4.7/5
(35)

the switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=1.8kΩ,R2=12kΩ,R3=\mathrm { R } _ { 1 } = 1.8 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 12 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2.8kΩ,R4=18kΩ,Vs=3 V,C=0.02μF2.8 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 18 \mathrm { k } \Omega , \mathrm { V } _ { \mathrm { s } } = 3 \mathrm {~V} , \mathrm { C } = 0.02 \mu \mathrm { F } .  the switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 1.8 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 12 \mathrm { k } \Omega , \mathrm { R } _ { 3 } =   2.8 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 18 \mathrm { k } \Omega , \mathrm { V } _ { \mathrm { s } } = 3 \mathrm {~V} , \mathrm { C } = 0.02 \mu \mathrm { F } .

(Essay)
4.9/5
(42)

The switch in the circuit shown below has been closed for a long time before it is opened at t=0t = 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=2kΩ,R2=1kΩ,R3=15R _ { 1 } = 2 \mathrm { k } \Omega , R _ { 2 } = 1 \mathrm { k } \Omega , R _ { 3 } = 15 kΩ,Is=3 mA, L=200mH\mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} , \mathrm {~L} = 200 \mathrm { mH } .  The switch in the circuit shown below has been closed for a long time before it is opened at  t = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 2 \mathrm { k } \Omega , R _ { 2 } = 1 \mathrm { k } \Omega , R _ { 3 } = 15   \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} , \mathrm {~L} = 200 \mathrm { mH } .

(Essay)
4.8/5
(28)

The switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=3kΩ,R2=6kΩ,R3=2\mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2 kΩ,R4=2kΩ,R5=4kΩ,Is=0.6 mA, Vs=6 V,C=0.08μF\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 4 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 0.6 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { C } = 0.08 \mu \mathrm { F } .  The switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 4 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 0.6 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { C } = 0.08 \mu \mathrm { F } .

(Essay)
4.9/5
(44)

The switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)v ( t ) across the capacitor for t0t \geq 0 . Assume R1=1kΩ,R2=2kΩ,R3=2R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 2 \mathrm { k } \Omega , R _ { 3 } = 2 kΩ,R4=3kΩ,Is=3 mA,C=0.2μF\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 3 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} , \mathrm { C } = 0.2 \mu \mathrm { F } .  The switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  v ( t )  across the capacitor for  t \geq 0 . Assume  R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 2 \mathrm { k } \Omega , R _ { 3 } = 2   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 3 \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 3 \mathrm {~mA} , \mathrm { C } = 0.2 \mu \mathrm { F } .

(Essay)
4.7/5
(37)

the switch in the circuit shown below has been closed for a long time before it is opened at t =0= 0 . Find the voltage v(t)\mathrm { v } ( \mathrm { t } ) across the capacitor for t0\mathrm { t } \geq 0 . Assume R1=8kΩ,R2=24kΩ,R3=3\mathrm { R } _ { 1 } = 8 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 24 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 3 kΩ,Is=0.5 mA, Vs=3.2 V,C=0.05μF\mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 0.5 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 3.2 \mathrm {~V} , \mathrm { C } = 0.05 \mu \mathrm { F } .  the switch in the circuit shown below has been closed for a long time before it is opened at t  = 0 . Find the voltage  \mathrm { v } ( \mathrm { t } )  across the capacitor for  \mathrm { t } \geq 0 . Assume  \mathrm { R } _ { 1 } = 8 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 24 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 3   \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 0.5 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 3.2 \mathrm {~V} , \mathrm { C } = 0.05 \mu \mathrm { F } .

(Essay)
4.8/5
(38)

The switch in the circuit shown below has been closed for a long time before it is opened at t=0t = 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=400Ω,R2=2kΩ,R3=1R _ { 1 } = 400 \Omega , R _ { 2 } = 2 k \Omega , R _ { 3 } = 1 kΩ,R4=6kΩ,Vs=2 V, L=90mH\mathrm { k } \Omega , \mathrm { R } _ { 4 } = 6 \mathrm { k } \Omega , \mathrm { V } _ { \mathrm { s } } = 2 \mathrm {~V} , \mathrm {~L} = 90 \mathrm { mH } .  The switch in the circuit shown below has been closed for a long time before it is opened at  t = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 400 \Omega , R _ { 2 } = 2 k \Omega , R _ { 3 } = 1   \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 6 \mathrm { k } \Omega , \mathrm { V } _ { \mathrm { s } } = 2 \mathrm {~V} , \mathrm {~L} = 90 \mathrm { mH } .

(Essay)
4.9/5
(28)

The switch in the circuit shown below has been closed for a long time before it is opened at t=0t = 0 . Find the current i(t)i ( t ) through the inductor for t0t \geq 0 . Assume R1=3kΩ,R2=6kΩ,R3=2R _ { 1 } = 3 \mathrm { k } \Omega , R _ { 2 } = 6 \mathrm { k } \Omega , R _ { 3 } = 2 kΩ,Is=6 mA, L=80mH\mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 6 \mathrm {~mA} , \mathrm {~L} = 80 \mathrm { mH } .  The switch in the circuit shown below has been closed for a long time before it is opened at  t = 0 . Find the current  i ( t )  through the inductor for  t \geq 0 . Assume  R _ { 1 } = 3 \mathrm { k } \Omega , R _ { 2 } = 6 \mathrm { k } \Omega , R _ { 3 } = 2   \mathrm { k } \Omega , \mathrm { I } _ { \mathrm { s } } = 6 \mathrm {~mA} , \mathrm {~L} = 80 \mathrm { mH } .

(Essay)
4.8/5
(38)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)