Exam 9: Phasors and Impedances

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

for the circuit shown below, let Vs(t)=396cos(2π60t30)V\mathrm { Vs } ( \mathrm { t } ) = 396 \cos \left( 2 \pi 60 \mathrm { t } - 30 ^ { \circ } \right) \mathrm { V } , R1=15Ω,R2=35Ω,R3=46Ω,L1=33mH,L2=63mH,C=126μF\mathrm { R } _ { 1 } = 15 \Omega , \mathrm { R } _ { 2 } = 35 \Omega , \mathrm { R } _ { 3 } = 46 \Omega , \mathrm { L } _ { 1 } = 33 \mathrm { mH } , \mathrm { L } _ { 2 } = 63 \mathrm { mH } , \mathrm { C } = 126 \mu \mathrm { F } (a) Find impedances ZR1,ZR2,ZR3,ZL1,ZL2,ZCZ _ { R 1 } , Z _ { R 2 } , Z _ { R 3 } , Z _ { L 1 } , Z _ { L 2 } , Z _ { C } , and phasor VSV _ { S } for v(t)v ( t ) . (b) Find the equivalent impedance ZeqZ _ { e q } of parallel combination of ZR2+ZCZ _ { R 2 } + Z _ { C } and ZR3+ZLZ _ { R 3 } + Z _ { L } . (c) Find the total impedance ZtZ _ { t } seen from the voltage source. (d) Find the phasor for the current I\mathrm { I } . (e) Find the phasor for load voltage V0V _ { 0 } . (f) Find the phasors for I1I _ { 1 } and I2I _ { 2 } .  for the circuit shown below, let  \mathrm { Vs } ( \mathrm { t } ) = 396 \cos \left( 2 \pi 60 \mathrm { t } - 30 ^ { \circ } \right) \mathrm { V } ,  \mathrm { R } _ { 1 } = 15 \Omega , \mathrm { R } _ { 2 } = 35 \Omega , \mathrm { R } _ { 3 } = 46 \Omega , \mathrm { L } _ { 1 } = 33 \mathrm { mH } , \mathrm { L } _ { 2 } = 63 \mathrm { mH } , \mathrm { C } = 126 \mu \mathrm { F }  (a) Find impedances  Z _ { R 1 } , Z _ { R 2 } , Z _ { R 3 } , Z _ { L 1 } , Z _ { L 2 } , Z _ { C } , and phasor  V _ { S }  for  v ( t ) . (b) Find the equivalent impedance  Z _ { e q }  of parallel combination of  Z _ { R 2 } + Z _ { C }  and  Z _ { R 3 } + Z _ { L } . (c) Find the total impedance  Z _ { t }  seen from the voltage source. (d) Find the phasor for the current  \mathrm { I } . (e) Find the phasor for load voltage  V _ { 0 } . (f) Find the phasors for  I _ { 1 }  and  I _ { 2 } .

Free
(Essay)
4.9/5
(36)
Correct Answer:
Verified

ZL1=jωL1=j12.4407Ω,ZL2=jωL2=j23.7504ΩZC=1/(jωC)=j21.0522ΩZa=(R2+ZC)(R3+ZL2)=25.9642j2.558ΩZt=R1+ZL1+Za=40.9642+j9.8828ΩI=Vs/Zt=6.8094j6.4763 A Vo=Za×I=160.2351j185.5697=245.176249.1902VVo(t)=245.1762cos(2π60t49.1902)VI1=Vo/(R2+ZC)=5.7037j1.8713=6.002818.1636AI2=Vo/(R3+ZL2)=1.1057j4.605=4.735976.4981A\begin{array} { l } Z _ { \mathrm { L } 1 } = \mathrm { j } \omega \mathrm { L } _ { 1 } = \mathrm { j } 12.4407 \Omega , \mathrm { Z } _ { \mathrm { L } 2 } = \mathrm { j } \omega \mathrm { L } _ { 2 } = \mathrm { j } 23.7504 \Omega \\\mathrm { Z } _ { \mathrm { C } } = 1 / ( \mathrm { j } \omega \mathrm { C } ) = - \mathrm { j } 21.0522 \Omega \\\mathrm { Z } _ { \mathrm { a } } = \left( \mathrm { R } _ { 2 } + \mathrm { Z } _ { \mathrm { C } } \right) \| \left( \mathrm { R } _ { 3 } + \mathrm { Z } _ { \mathrm { L } 2 } \right) = 25.9642 - \mathrm { j } 2.558 \Omega \\\mathrm { Z } _ { \mathrm { t } } = \mathrm { R } _ { 1 } + \mathrm { Z } _ { \mathrm { L } 1 } + \mathrm { Z } _ { \mathrm { a } } = 40.9642 + \mathrm { j } 9.8828 \Omega \\\mathrm { I } = \mathrm { V } _ { \mathrm { s } } / \mathrm { Z } _ { \mathrm { t } } = 6.8094 - \mathrm { j } 6.4763 \mathrm {~A} \\\mathrm {~V} _ { \mathrm { o } } = \mathrm { Z } _ { \mathrm { a } } \times \mathrm { I } = 160.2351 - \mathrm { j } 185.5697 = 245.1762 \angle - 49.1902 ^ { \circ } \mathrm { V } \\\mathrm { V } _ { \mathrm { o } } ( \mathrm { t } ) = 245.1762 \cos \left( 2 \pi 60 \mathrm { t } - 49.1902 ^ { \circ } \right) \mathrm { V } \\\mathrm { I } _ { 1 } = \mathrm { V } _ { \mathrm { o } } / \left( \mathrm { R } _ { 2 } + \mathrm { Z } _ { \mathrm { C } } \right) = 5.7037 - \mathrm { j } 1.8713 = 6.0028 \angle - 18.1636 ^ { \circ } \mathrm { A } \\\mathrm { I } _ { 2 } = \mathrm { V } _ { \mathrm { o } } / \left( \mathrm { R } _ { 3 } + \mathrm { Z } _ { \mathrm { L } 2 } \right) = 1.1057 - \mathrm { j } 4.605 = 4.7359 \angle - 76.4981 ^ { \circ } \mathrm { A }\end{array} clear all;
RI=15;R2=35;R3=46;Ll=33e3;L2=63e3;C=126e6;f=60\mathrm { R } I = 15 ; \mathrm { R } 2 = 35 ; \mathrm { R } 3 = 46 ; \mathrm { Ll } = 33 \mathrm { e } - 3 ; \mathrm { L } 2 = 63 \mathrm { e } - 3 ; \mathrm { C } = 126 \mathrm { e } - 6 ; \mathrm { f } = 60 ;
W=2p\mathrm { W } = 2 * \mathrm { p } * f\mathrm { f }
2L1=jWL12 L 1 = j * W ^ { * } L 1
ZL2=jwL2\mathrm { ZL } 2 = \mathrm { j } ^ { * } w ^ { \star } \mathrm { L } 2
ZC=1/(J WC)\mathrm { ZC } = 1 / \left( \mathrm { J } ^ { * } \mathrm {~W} ^ { * } \mathrm { C } \right)
Vs=P2Rd(396,30)\mathrm { Vs } = \mathrm { P } 2 \mathrm { Rd } ( 396 , - 30 )
Za=P([R2+ZC,R3+ZL2])\mathrm { Za } = \mathrm { P } ( [ \mathrm { R } 2 + \mathrm { ZC } , \mathrm { R } 3 + \mathrm { ZL } 2 ] )
Zt=R1+ZL1+Za\mathrm { Zt } = \mathrm { R } 1 + \mathrm { ZL } 1 + \mathrm { Za }
I=Vs/Zt\mathrm { I } = \mathrm { Vs } / \mathrm { Zt }
IP=R2P(I)\mathrm { IP } = \mathrm { R } 2 \mathrm { P } ( \mathrm { I } )
Vo=ZaIV o = Z a * I
Vop=R2P(Vo)\mathrm { Vop } = \mathrm { R } 2 \mathrm { P } ( \mathrm { Vo } )
I1V/(R2+ZC)I 1 - V \circ / ( R 2 + Z C )
I1p=R2PI 1 p = R 2 P (Il)
I2=VO/(R3+ZL2)I 2 = \mathrm { VO } / ( \mathrm { R } 3 + \mathrm { ZL } 2 )
I 2p=R2P(I2)2 \mathrm { p } = \mathrm { R } 2 \mathrm { P } ( \mathrm { I } 2 )

Find V in polar notation. V=111100+1775\mathbf { V } = 11 \angle 110 ^ { 0 } + 17 \angle - 75 ^ { \circ }

Free
(Essay)
4.8/5
(25)
Correct Answer:
Verified

V=0.6377j6.0841=6.117484.0164V\mathbf { V } = 0.6377 - \mathrm { j } 6.0841 = 6.1174 \angle - 84.0164 ^ { \circ } \mathrm { V }
clear all;
V1-P2Rd (11, 110)
V1p=R2P (V1)
V2=P2Rd (17, -75 )
V2p=R2P (V2)
V=V1+V2
Vp-R2P (V)

for the circuit shown below, let vs(t)=457cos(2π60t110)V,R1=20Ω,R2=65Ω,L1=35mH,L2=85mH,C=95μF\mathrm { vs } ( \mathrm { t } ) = 457 \cos \left( 2 \pi 60 \mathrm { t } - 110 ^ { \circ } \right) \mathrm { V } , \mathrm { R } _ { 1 } = 20 \Omega , \mathrm { R } _ { 2 } = 65 \Omega , \mathrm { L } _ { 1 } = 35 \mathrm { mH } , \mathrm { L } _ { 2 } = 85 \mathrm { mH } , \mathrm { C } = 95 \mu \mathrm { F } (a) Find impedances ZR1,ZL1,ZR2Z _ { \mathrm { R } 1 } , Z _ { L 1 } , Z _ { R 2 } , ZL2, Z ZCZ _ { C } and phasor VSV _ { S } for vs(t). (b) Find the equivalent impedance ZaZ _ { a } of parallel combination of ZR2+ZL2Z _ { R 2 } + Z _ { L 2 } and ZCZ _ { C } . (c) Find the total impedance ZtZ _ { t } seen from the voltage source. (d) Find the phasor for the current I. (e) Find the phasor for VCV _ { C } across the capacitor. (f) Find vC(t)v _ { C } ( t ) .  for the circuit shown below, let  \mathrm { vs } ( \mathrm { t } ) = 457 \cos \left( 2 \pi 60 \mathrm { t } - 110 ^ { \circ } \right) \mathrm { V } , \mathrm { R } _ { 1 } = 20 \Omega , \mathrm { R } _ { 2 } = 65 \Omega , \mathrm { L } _ { 1 } = 35 \mathrm { mH } , \mathrm { L } _ { 2 } = 85 \mathrm { mH } , \mathrm { C } = 95 \mu \mathrm { F }  (a) Find impedances  Z _ { \mathrm { R } 1 } , Z _ { L 1 } , Z _ { R 2 } , ZL2, Z  Z _ { C }  and phasor  V _ { S }  for vs(t). (b) Find the equivalent impedance  Z _ { a }  of parallel combination of  Z _ { R 2 } + Z _ { L 2 }  and  Z _ { C } . (c) Find the total impedance  Z _ { t }  seen from the voltage source. (d) Find the phasor for the current I. (e) Find the phasor for  V _ { C }  across the capacitor. (f) Find  v _ { C } ( t ) .

Free
(Essay)
4.9/5
(25)
Correct Answer:
Verified

ZR1=R1=20Ω,ZR2=R2=65ΩZ _ { R 1 } = R _ { 1 } = 20 \Omega , Z _ { R 2 } = R _ { 2 } = 65 \Omega ZL1=jωL1=j13.1947Ω,ZL2=jωL2=j32.0442ΩZC=1/(jωC)=j27.9219ΩZa=(R2+ZL2)ZC=11.9463j28.6796ΩZt=R1+ZL1+Za=31.9463j15.4849ΩI=Vs/Zt=1.3143j12.8055 A Vc=Za×I=351.5538j190.6723=399.9325151.5259VVc(t)=399.9325cos(2π60t151.5259)V\begin{array} { l } Z _ { \mathrm { L } 1 } = \mathrm { j } \omega \mathrm { L } _ { 1 } = \mathrm { j } 13.1947 \Omega , \mathrm { Z } _ { \mathrm { L } 2 } = \mathrm { j } \omega \mathrm { L } _ { 2 } = \mathrm { j } 32.0442 \Omega \\\mathrm { Z } _ { \mathrm { C } } = 1 / ( \mathrm { j } \omega \mathrm { C } ) = - \mathrm { j } 27.9219 \Omega \\\mathrm { Z } _ { \mathrm { a } } = \left( \mathrm { R } _ { 2 } + \mathrm { Z } _ { \mathrm { L } 2 } \right) \| \mathrm { Z } _ { \mathrm { C } } = 11.9463 - \mathrm { j } 28.6796 \Omega \\\mathrm { Z } _ { \mathrm { t } } = \mathrm { R } _ { 1 } + \mathrm { Z } _ { \mathrm { L } 1 } + \mathrm { Z } _ { \mathrm { a } } = 31.9463 - \mathrm { j } 15.4849 \Omega \\\mathrm { I } = \mathrm { V } _ { \mathrm { s } } / \mathrm { Z } _ { \mathrm { t } } = 1.3143 - \mathrm { j } 12.8055 \mathrm {~A} \\\mathrm {~V} _ { \mathrm { c } } = \mathrm { Z } _ { \mathrm { a } } \times \mathrm { I } = - 351.5538 - \mathrm { j } 190.6723 = 399.9325 \angle - 151.5259 ^ { \circ } \mathrm { V } \\\mathrm { V } _ { \mathrm { c } } ( \mathrm { t } ) = 399.9325 \cos \left( 2 \pi 60 \mathrm { t } - 151.5259 ^ { \circ } \right) \mathrm { V }\end{array}  clear all; R1=20;R2=65;Ll=35e3;L2=85e3;C=95e6;f=60w=2pif ZL1-j * WL1ZL2=jwL2ZC1/(jwC)Vs=P2Rd(457,110)Za=P([R2+ZL2,ZC])2t=R1+2L1+2aI=Vs/ZtIp=R2P (I) Vc=2aIVcp=R2P(Vc)\begin{array}{l}\text { clear all; }\\\mathrm { R } 1 = 20 ; \mathrm { R } 2 = 65 ; \mathrm { Ll } = 35 \mathrm { e } - 3 ; \mathrm { L } 2 = 85 \mathrm { e } - 3 ; \mathrm { C } = 95 \mathrm { e } - 6 ; \mathrm { f } = 60 \text {; }\\w = 2 ^ { \star } p i * f\\\text { ZL1-j * } W ^ { * } L 1\\\mathrm { ZL } 2 = j ^ { \star } w ^ { \star } \mathrm { L } 2\\\mathrm { ZC } - 1 / \left( j ^ { * } \mathrm { w } ^ { * } \mathrm { C } \right)\\\mathrm { Vs } = \mathrm { P } 2 \operatorname { Rd } ( 457 , - 110 )\\\mathrm { Z } a = \mathrm { P } ( [ \mathrm { R } 2 + \mathrm { ZL } 2 , \mathrm { ZC } ] )\\2 t = R 1 + 2 L 1 + 2 a\\\mathrm { I } = \mathrm { V } s / \mathrm { Zt }\\I p = R 2 P \text { (I) }\\\mathrm { Vc } = 2 \mathrm { a } ^ { \star } \mathrm { I }\\\mathrm { Vcp } = \mathrm { R } 2 \mathrm { P } ( \mathrm { Vc } )\end{array}

for the circuit shown below, let ()=545 2\pi60-6 ,=20\Omega,=33\Omega,=63,=72 , =128\mu (a) Find impedances ZL1,ZL2Z _ { L 1 } , Z _ { L 2 } , and ZCZ _ { C } . (b) Find the equivalent impedance Za\mathrm { Z } _ { \mathrm { a } } of parallel combination of ZL2\mathrm { Z } _ { \mathrm { L } 2 } and ZR2+ZC\mathrm { Z } _ { \mathrm { R } 2 } + \mathrm { Z } _ { \mathrm { C } } . (c) Find the total impedance ZtZ _ { t } seen from the voltage source. (d) Find the phasor for the current I. (e) Find the phasor for VoV _ { o } across the inductor L2L _ { 2 } . (f) Find the phasors for I1I _ { 1 } and I2I _ { 2 } . (g) Find Voo(t)\mathrm { Vo } _ { \mathrm { o } } ( \mathrm { t } ) .  for the circuit shown below, let  \begin{array} { l }  \mathrm { vs } ( \mathrm { t } ) = 545 \cos \left( 2 \pi 60 \mathrm { t } - 60 ^ { \circ } \right) , \mathrm { R } _ { 1 } = 20 \Omega , \mathrm { R } _ { 2 } = 33 \Omega , \mathrm { L } _ { 1 } = 63 \mathrm { mH } , \mathrm { L } _ { 2 } = 72 \mathrm { mH } \text {, } \\ \mathrm { C } = 128 \mu \mathrm { F } \end{array}  (a) Find impedances  Z _ { L 1 } , Z _ { L 2 } , and  Z _ { C } . (b) Find the equivalent impedance  \mathrm { Z } _ { \mathrm { a } }  of parallel combination of  \mathrm { Z } _ { \mathrm { L } 2 }  and  \mathrm { Z } _ { \mathrm { R } 2 } + \mathrm { Z } _ { \mathrm { C } } . (c) Find the total impedance  Z _ { t }  seen from the voltage source.  (d) Find the phasor for the current I. (e) Find the phasor for  V _ { o }  across the inductor  L _ { 2 } . (f) Find the phasors for  I _ { 1 }  and  I _ { 2 } . (g) Find  \mathrm { Vo } _ { \mathrm { o } } ( \mathrm { t } ) .

(Essay)
4.8/5
(35)

for the circuit shown below, let ()=575 2\pi60+3 =35\Omega,=53\Omega,=76,=117\mu,=106\mu (a) Find impedances ZL,ZCl,ZC2\mathrm { Z } _ { \mathrm { L } } , \mathrm { Z } _ { \mathrm { Cl } } , \mathrm { Z } _ { \mathrm { C } 2 } , and phasor VS\mathrm { V } _ { \mathrm { S } } for vs(t)\mathrm { vs } ( \mathrm { t } ) . (b) Find the equivalent impedance ZaZ _ { a } of parallel combination of ZC2Z _ { C 2 } and ZR2+ZLZ _ { R 2 } + Z _ { L } . (c) Find the total impedance ZtZ _ { t } seen from the voltage source. (d) Find the phasor for the current I. (e) Find the phasor for VoV _ { o } across the capacitor C2C _ { 2 } .  for the circuit shown below, let  \begin{array} { l }  \mathrm { vs } ( \mathrm { t } ) = 575 \cos \left( 2 \pi 60 \mathrm { t } + 30 ^ { \circ } \right) \\ \mathrm { R } _ { 1 } = 35 \Omega , \mathrm { R } _ { 2 } = 53 \Omega , \mathrm { L } = 76 \mathrm { mH } , \mathrm { C } _ { 1 } = 117 \mu \mathrm { F } , \mathrm { C } _ { 2 } = 106 \mu \mathrm { F } \end{array}  (a) Find impedances  \mathrm { Z } _ { \mathrm { L } } , \mathrm { Z } _ { \mathrm { Cl } } , \mathrm { Z } _ { \mathrm { C } 2 } , and phasor  \mathrm { V } _ { \mathrm { S } }  for  \mathrm { vs } ( \mathrm { t } ) . (b) Find the equivalent impedance  Z _ { a }  of parallel combination of  Z _ { C 2 }  and  Z _ { R 2 } + Z _ { L } . (c) Find the total impedance  Z _ { t }  seen from the voltage source. (d) Find the phasor for the current I. (e) Find the phasor for  V _ { o }  across the capacitor  C _ { 2 } .

(Essay)
4.7/5
(30)

use phasors to express the following equation as a single cosine. v(t)=45sin(2π50t120)+65sin(2π50t+150)v ( t ) = - 45 \sin \left( 2 \pi 50 t - 120 ^ { \circ } \right) + 65 \sin \left( 2 \pi 50 t + 150 ^ { \circ } \right)

(Essay)
4.7/5
(39)

Find the phasor I for i(t)=25cos(2π50t60)A\mathrm { i } ( \mathrm { t } ) = - 25 \cos \left( 2 \pi 50 \mathrm { t } - 60 ^ { \circ } \right) \mathrm { A }

(Short Answer)
4.9/5
(34)

Represent V in polar notation, and find the time domain expression v(t) for the voltage when the frequency is f = 60 Hz. V=45150+3580560+1015\mathbf { V } = \frac { 45 \angle 150 ^ { \circ } + 35 \angle 80 ^ { \circ } } { 5 \angle 60 ^ { \circ } + 10 \angle - 15 ^ { \circ } }

(Essay)
4.8/5
(31)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)