Exam 3: Circuit Analysis Methods

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

In the circuit shown below, let Is1=5 mA,Is2=2 mA,R1=1kΩ,R2=500Ω,R3=1.5kΩ,R4=600ΩI _ { \mathrm { s } 1 } = 5 \mathrm {~mA} , \mathrm { I } _ { \mathrm { s } 2 } = 2 \mathrm {~mA} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 500 \Omega , \mathrm { R } _ { 3 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 600 \Omega . Use mesh analysis to find mesh currents I1,I2\mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , and I3\mathrm { I } _ { 3 } . Also, find V1, V2\mathrm { V } _ { 1 } , \mathrm {~V} _ { 2 } , and V3\mathrm { V } _ { 3 } .  In the circuit shown below, let  I _ { \mathrm { s } 1 } = 5 \mathrm {~mA} , \mathrm { I } _ { \mathrm { s } 2 } = 2 \mathrm {~mA} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 500 \Omega , \mathrm { R } _ { 3 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 600 \Omega . Use mesh analysis to find mesh currents  \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , and  \mathrm { I } _ { 3 } . Also, find  \mathrm { V } _ { 1 } , \mathrm {~V} _ { 2 } , and  \mathrm { V } _ { 3 } .

Free
(Essay)
4.8/5
(42)
Correct Answer:
Verified

I1=I11R1(I2I1)+R3I2+R2(I2I3)=0I3=I22V2=R4(I1I3)V1=V2+R1(I1I2)V3=V1R3I2I1=5 mA,I2=1.3333 mA,I3=2 mA,V1=7.8667 V,V2=4.2 V,V3=5.8667 V\begin{array} { l } I _ { 1 } = I _ { 1 } 1 \\R _ { 1 } \left( I _ { 2 } - I _ { 1 } \right) + R _ { 3 } I _ { 2 } + R _ { 2 } \left( I _ { 2 } - I _ { 3 } \right) = 0 \\I _ { 3 } = - I _ { 2 } 2 \\V _ { 2 } = R _ { 4 } \left( I _ { 1 } - I _ { 3 } \right) \\V _ { 1 } = V _ { 2 } + R _ { 1 } \left( I _ { 1 } - I _ { 2 } \right) \\V _ { 3 } = V _ { 1 } - R _ { 3 } I _ { 2 } \\I _ { 1 } = 5 \mathrm {~mA} , I _ { 2 } = 1.3333 \mathrm {~mA} , I _ { 3 } = - 2 \mathrm {~mA} , V _ { 1 } = 7.8667 \mathrm {~V} , V _ { 2 } = 4.2 \mathrm {~V} , V _ { 3 } = 5.8667 \mathrm {~V}\end{array} % Mesh Analysis clear all
Isl =0.005;Is2=0.002= 0.005 ; I s 2 = 0.002 ;
R1=1000;R2=500;R3=1500;R4=600R 1 = 1000 ; R 2 = 500 ; R 3 = 1500 ; R 4 = 600 ;
syms I1 I2 I3
[I1,I2,I3]=s01ve(R1(I2I1)+R3I2+R2(I2I3),[ I 1 , I 2 , I 3 ] = s 01 v e ( R 1 * ( I 2 - I 1 ) + R 3 * I 2 + R 2 * ( I 2 - I 3 ) , \ldots
I1=Is1,I3=Is2,I1,I2,I3)I 1 = I s 1 , I 3 = - I s 2 , I 1 , I 2 , I 3 )
V2=R4(I1I3V 2 = R 4 ^ { * } ( I 1 - I 3 \rangle
V1=V2+R1(I1I2)V 1 = V 2 + R 1 * ( I 1 - I 2 )
V3=V1R3I2V 3 = V 1 - R 3 * I 2
IR 4=I1I34 = I 1 - I 3
IR1=I1I2I R 1 = I 1 - I 2
IR2=I3+I2I R 2 = - I 3 + I 2
IR3 =I2= I 2
SumI=IR1IR2+IR4S u m I = - I R 1 - I R 2 + I R 4
I1=vpa(I1,7)I 1 = \operatorname { vpa } ( I 1,7 )
I2=vpa(I2,7)I 2 = \operatorname { vpa } ( \mathrm { I } 2,7 )
I3=vpa(I3,7)\mathrm { I } 3 = \mathrm { vpa } ( \mathrm { I } 3,7 )
V1=vpa(V,7)\mathrm { V } 1 = \operatorname { vpa } ( \mathrm { V } , 7 )
V2=Vpa(V2,7)\mathrm { V } 2 = \mathrm { Vpa } ( \mathrm { V } 2,7 )
V3=VPa(V3,7)\mathrm { V } 3 = \mathrm { VPa } ( \mathrm { V } 3,7 )
IR 4=4 = vpa (IR4, 7)
IR1=vpa (IR1, 7)
IR2=vpa (IR2, T)
IR3=ypa (IR3, 7)
SumI=vpa (SumI, 7) Answers: I1=0.005I2=0.001333333I3=0.002V1=7.866667V2=4.2V3=5.866667\begin{array} { l } I 1 = \\0.005 \\I 2 = \\0.001333333 \\I 3 = \\- 0.002 \\V 1 = \\7.866667 \\V 2 = \\4.2 \\V 3 = \\5.866667\end{array}

In the circuit shown below, let Vs=9 V,R1=1kΩ,R2=400Ω,R3=500Ω,R4=1.2kΩ,gm=0.0004\mathrm { V } _ { \mathrm { s } } = 9 \mathrm {~V} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 400 \Omega , \mathrm { R } _ { 3 } = 500 \Omega , \mathrm { R } _ { 4 } = 1.2 \mathrm { k } \Omega , \mathrm { g } _ { \mathrm { m } } = 0.0004 Use mesh analysis to find mesh currents I1,I2I _ { 1 } , I _ { 2 } , and I3I _ { 3 } . Also, find V1V _ { 1 } and V2V _ { 2 } .  In the circuit shown below, let  \mathrm { V } _ { \mathrm { s } } = 9 \mathrm {~V} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 400 \Omega , \mathrm { R } _ { 3 } = 500 \Omega , \mathrm { R } _ { 4 } = 1.2 \mathrm { k } \Omega , \mathrm { g } _ { \mathrm { m } } = 0.0004  Use mesh analysis to find mesh currents  I _ { 1 } , I _ { 2 } , and  I _ { 3 } . Also, find  V _ { 1 }  and  V _ { 2 } .

Free
(Essay)
4.9/5
(33)
Correct Answer:
Verified

R1I1+R4I3+R3(I3I2)+R2(I1I2)=0Vs+R2(I2I1)+R3(I2I3)=0I3I1=gmV1 V1=R3(I2I3)V2=R4I3I1=3.0891 mA,I2=14.1095 mA,I3=4.9258 mA, V1=4.5918 V, V2=5.9109 V\begin{array} { l } \mathrm { R } _ { 1 } \mathrm { I } _ { 1 } + \mathrm { R } _ { 4 } \mathrm { I } _ { 3 } + \mathrm { R } _ { 3 } \left( \mathrm { I } _ { 3 } - \mathrm { I } _ { 2 } \right) + \mathrm { R } _ { 2 } \left( \mathrm { I } _ { 1 } - \mathrm { I } _ { 2 } \right) = 0 \\- \mathrm { V } _ { \mathrm { s } } + \mathrm { R } _ { 2 } \left( \mathrm { I } _ { 2 } - \mathrm { I } _ { 1 } \right) + \mathrm { R } _ { 3 } \left( \mathrm { I } _ { 2 } - \mathrm { I } _ { 3 } \right) = 0 \\\mathrm { I } _ { 3 } - \mathrm { I } _ { 1 } = \mathrm { g } _ { \mathrm { m } } \mathrm { V } _ { 1 } \\\mathrm {~V} _ { 1 } = \mathrm { R } _ { 3 } \left( \mathrm { I } _ { 2 } - \mathrm { I } _ { 3 } \right) \\\mathrm { V } _ { 2 } = \mathrm { R } _ { 4 } \mathrm { I } _ { 3 } \\\mathrm { I } _ { 1 } = 3.0891 \mathrm {~mA} , \mathrm { I } _ { 2 } = 14.1095 \mathrm {~mA} , \mathrm { I } _ { 3 } = 4.9258 \mathrm {~mA} , \mathrm {~V} _ { 1 } = 4.5918 \mathrm {~V} , \mathrm {~V} _ { 2 } = 5.9109 \mathrm {~V}\end{array} % Mesh Analysis clear all
VS=9;V S = 9 ;
R1=1000;R2=400;R3=500;R4=1200;gm=0.0004R 1 = 1000 ; R 2 = 400 ; R 3 = 500 ; R 4 = 1200 ; g m = 0.0004
syms I1 I2 I3
[I1,I2,I3]s0lve(Vs+R2(I2I1)+R3(I2I3),[ I 1 , I 2 , I 3 ] - s 0 l v e ( - V s + R 2 * ( I 2 - I 1 ) + R 3 * ( I 2 - I 3 ) , \ldots
R1I1+R4I3+R3{I3I2)+R2(III2),R 1 * I 1 + R 4 ^ { * } I 3 + R 3 ^ { * } \{ I 3 - I 2 ) + R 2 ^ { * } ( I I - I 2 ) , \ldots
I3I1==gmR3(I2I3),I1,I2,I3)\left. I 3 - I 1 = = g _ { m } * R 3 * ( I 2 - I 3 ) , I 1 , I 2 , I 3 \right)
V1=R3(I2I3)V 1 = R 3 ^ { * } ( I 2 - I 3 )
V2=R4I3\mathrm { V } 2 = \mathrm { R } 4 ^ { * } \mathrm { I } 3
IR 4=I34 = I 3
IRl =Il= \mathrm { Il }
IR2 =I2I1= I 2 - I 1
IR 3=I2=I33 = I 2 = I 3
SumI =IR2+IR3+gmv1= - I R 2 + I R 3 + g m * v 1
I1=vpa(I1,7)I 1 = \operatorname { vpa } ( I 1,7 )
I2=vpa(I2,7)I 2 = \operatorname { vpa } ( I 2,7 )
I 3=vpa(I3,7)3 = \operatorname { vpa } ( I 3,7 )
V1=vpa(V1,7)V 1 = \operatorname { vpa } ( \mathrm { V } 1,7 )
V2=Vpa(V2,7)\mathrm { V } 2 = \mathrm { Vpa } ( \mathrm { V } 2,7 )
IR4=vpa(IR4,7)\operatorname { IR4 } = \mathrm { vpa } ( \operatorname { IR4 } , 7 )
IR1=Vpa (IR1, 7)
IR2 = VPa (IR2, 7)
IR3=vpa (IR3,7)( \operatorname { IR3 } , 7 )
SumI=vpa (( SumI, 7)7 ) Answers: I1=0.003089054I2=0.01410946I3=0.004925788V1=4.591837V2=5.910946\begin{array} { l } I 1 = \\0.003089054 \\I 2 = \\0.01410946 \\I 3 = \\0.004925788 \\V 1 = \\4.591837 \\V 2 = \\5.910946\end{array}

In the circuit shown below, (a) Write a mesh equation by summing the voltage drops around mesh 1 (left side). (b) Write a mesh equation by summing the voltage drops around mesh 2 (right side). (c) Solve the two equations to find I1I _ { 1 } and I2I _ { 2 } . (d) Find voltage V3V _ { 3 } across R2R _ { 2 } .  In the circuit shown below, (a) Write a mesh equation by summing the voltage drops around mesh 1 (left side). (b) Write a mesh equation by summing the voltage drops around mesh 2 (right side). (c) Solve the two equations to find  I _ { 1 }  and  I _ { 2 } . (d) Find voltage  V _ { 3 }  across  R _ { 2 } .

Free
(Essay)
4.8/5
(37)
Correct Answer:
Verified

V1+R1I1+R2(I1I2)=0R2(I2I1)+R3I2+V2=0 V3=R2(I1I2)I1=1 mA,I2=1 mA, V3=3 V\begin{array} { l } - \mathrm { V } _ { 1 } + \mathrm { R } _ { 1 } \mathrm { I } _ { 1 } + \mathrm { R } _ { 2 } \left( \mathrm { I } _ { 1 } - \mathrm { I } _ { 2 } \right) = 0 \\\mathrm { R } _ { 2 } \left( \mathrm { I } _ { 2 } - \mathrm { I } _ { 1 } \right) + \mathrm { R } _ { 3 } \mathrm { I } _ { 2 } + \mathrm { V } _ { 2 } = 0 \\\mathrm {~V} _ { 3 } = \mathrm { R } _ { 2 } \left( \mathrm { I } _ { 1 } - \mathrm { I } _ { 2 } \right) \\\mathrm { I } _ { 1 } = 1 \mathrm {~mA} , \mathrm { I } _ { 2 } = - 1 \mathrm {~mA} , \mathrm {~V} _ { 3 } = 3 \mathrm {~V}\end{array} % Mesh Analysis clear all
V1=5;V2=6\mathrm { V } 1 = 5 ; \mathrm { V } 2 = 6 ;
R1=2000;R2=1500;R3=3000;\mathrm { R } 1 = 2000 ; \mathrm { R } 2 = 1500 ; \mathrm { R } 3 = 3000 ;

 Syms II I2 [I1,I2]= Solve (V1+R1I1+R2(I1I2),R2(I2I1)+R3I2+V2,I1,I2)V3=R2(I1I2)I1=vpa(I1,7) I2 =vpa(I2,7)V3=vpa(V3,7)\begin{array}{l}\text { Syms II I2 } \\{[I 1, I 2]=\text { Solve }(-\mathrm{V} 1+\mathrm{R} 1 * I 1+\mathrm{R} 2 *(I 1-I 2), \mathrm{R} 2 *(I 2-I 1)+\mathrm{R} 3 * I 2+\mathrm{V} 2, I 1, I 2)} \\\mathrm{V} 3=\mathrm{R} 2 *(I 1-I 2) \\I 1=\operatorname{vpa}(I 1,7) \\\text { I2 }=\operatorname{vpa}(I 2,7) \\\mathrm{V} 3=\operatorname{vpa}(\mathrm{V} 3,7)\end{array}
Answers: 11=0.00112=0.001V3=3.0\begin{array} { l } 11 = \\0.001 \\12 = \\- 0.001 \\V 3 = \\3.0\end{array}

the circuit shown below, let Is=2 mA, Vs=6 V,R1=1.5kΩ,R2=2kΩ,R3=6kΩ,R4=2.5kΩ,R5=3kΩ\mathrm { I } _ { \mathrm { s } } = 2 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { R } _ { 1 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 3 \mathrm { k } \Omega  Use nodal analysis to find V1 and V2\text { Use nodal analysis to find } V _ { 1 } \text { and } V _ { 2 } \text {. }  the circuit shown below, let  \mathrm { I } _ { \mathrm { s } } = 2 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 6 \mathrm {~V} , \mathrm { R } _ { 1 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 3 \mathrm { k } \Omega   \text { Use nodal analysis to find } V _ { 1 } \text { and } V _ { 2 } \text {. }

(Essay)
4.8/5
(40)

In the circuit shown below, let Vs=8V,Is=2 mA,R1=1kΩ,R2=400Ω,R3=1.5kΩ,R4=2.5kΩ,R5=600ΩV _ { s } = 8 V , I _ { s } = 2 \mathrm {~mA} , R _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 400 \Omega , \mathrm { R } _ { 3 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 600 \Omega Use mesh analysis to find mesh currents I1,I2\mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , and I3\mathrm { I } _ { 3 } . Also, find V1, V2\mathrm { V } _ { 1 } , \mathrm {~V} _ { 2 } , and V3\mathrm { V } _ { 3 } .  In the circuit shown below, let  V _ { s } = 8 V , I _ { s } = 2 \mathrm {~mA} , R _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 400 \Omega , \mathrm { R } _ { 3 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 600 \Omega  Use mesh analysis to find mesh currents  \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , and  \mathrm { I } _ { 3 } . Also, find  \mathrm { V } _ { 1 } , \mathrm {~V} _ { 2 } , and  \mathrm { V } _ { 3 } .

(Essay)
4.7/5
(26)

In the circuit shown below, let Vs=7 V,Is=2 mA,R1=1kΩ,R2=1.5kΩ,R3=5kΩ,R4=500Ω\mathrm { V } _ { \mathrm { s } } = 7 \mathrm {~V} , \mathrm { I } _ { \mathrm { s } } = 2 \mathrm {~mA} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 500 \Omega Use mesh analysis to find mesh currents I1,I2I _ { 1 } , I _ { 2 } , and I3I _ { 3 } . Also, find V1V _ { 1 } and V2V _ { 2 } .  In the circuit shown below, let  \mathrm { V } _ { \mathrm { s } } = 7 \mathrm {~V} , \mathrm { I } _ { \mathrm { s } } = 2 \mathrm {~mA} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 500 \Omega  Use mesh analysis to find mesh currents  I _ { 1 } , I _ { 2 } , and  I _ { 3 } . Also, find  V _ { 1 }  and  V _ { 2 } .

(Essay)
4.9/5
(38)

the circuit shown below, let Vs1=6 V, Vs2=1 V,R1=1kΩ,R2=1.5kΩ,R3=2.5kΩ,R4=1.2kΩ,R5=800ΩV _ { \mathrm { s } 1 } = 6 \mathrm {~V} , \mathrm {~V} _ { \mathrm { s } 2 } = 1 \mathrm {~V} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 1.2 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 800 \Omega Use nodal analysis to find V1,V2V _ { 1 } , V _ { 2 } , and V3V _ { 3 } .  the circuit shown below, let  V _ { \mathrm { s } 1 } = 6 \mathrm {~V} , \mathrm {~V} _ { \mathrm { s } 2 } = 1 \mathrm {~V} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 1.2 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 800 \Omega  Use nodal analysis to find  V _ { 1 } , V _ { 2 } , and  V _ { 3 } .

(Essay)
4.8/5
(35)

In the circuit shown below, let Vs=3 V,Is=1 mA,R1=3kΩ,R2=2.5kΩ,R3=1kΩ\mathrm { V } _ { \mathrm { s } } = 3 \mathrm {~V} , \mathrm { I } _ { \mathrm { s } } = 1 \mathrm {~mA} , \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega Use mesh analysis to find mesh currents I1I _ { 1 } and I2I _ { 2 } . Also, find V1V _ { 1 } .  In the circuit shown below, let  \mathrm { V } _ { \mathrm { s } } = 3 \mathrm {~V} , \mathrm { I } _ { \mathrm { s } } = 1 \mathrm {~mA} , \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega  Use mesh analysis to find mesh currents  I _ { 1 }  and  I _ { 2 } . Also, find  V _ { 1 } .

(Essay)
4.8/5
(42)

the circuit shown below, let Vs1=5 V, Vs2=2 V,R1=4kΩ,R2=2.5kΩ,R3=1kΩ,R4=2kΩ\mathrm { V } _ { \mathrm { s } 1 } = 5 \mathrm {~V} , \mathrm {~V} _ { \mathrm { s } 2 } = 2 \mathrm {~V} , \mathrm { R } _ { 1 } = 4 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega Use nodal analysis to find V1V _ { 1 } and V2V _ { 2 } .  the circuit shown below, let  \mathrm { V } _ { \mathrm { s } 1 } = 5 \mathrm {~V} , \mathrm {~V} _ { \mathrm { s } 2 } = 2 \mathrm {~V} , \mathrm { R } _ { 1 } = 4 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega  Use nodal analysis to find  V _ { 1 }  and  V _ { 2 } .

(Essay)
4.9/5
(29)

In the circuit shown below, (a) Write a mesh equation around mesh 1 by summing the voltage drops around mesh 1 . (b) Write a mesh equation around supermesh formed by meshes 2 and 3 by summing the voltage drops around supermesh. (c) Write a constraint equation expressing Is\mathrm { I } _ { \mathrm { s } } by I2\mathrm { I } _ { 2 } and I3\mathrm { I } _ { 3 } . (d) Find I1,I2\mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , and I3\mathrm { I } _ { 3 } by solving the three equations. (e) Find the voltages V1,V2V _ { 1 } , V _ { 2 } .  In the circuit shown below, (a) Write a mesh equation around mesh 1 by summing the voltage drops around mesh 1 . (b) Write a mesh equation around supermesh formed by meshes 2 and 3 by summing the voltage drops around supermesh. (c) Write a constraint equation expressing  \mathrm { I } _ { \mathrm { s } }  by  \mathrm { I } _ { 2 }  and  \mathrm { I } _ { 3 } . (d) Find  \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , and  \mathrm { I } _ { 3 }  by solving the three equations. (e) Find the voltages  V _ { 1 } , V _ { 2 } .

(Essay)
4.7/5
(35)

In the circuit shown below, let Vs=3 V,R1=3kΩ,R2=1.5kΩ,R3=1kΩ,R4=1.2kΩ\mathrm { V } _ { \mathrm { s } } = 3 \mathrm {~V} , \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 1.2 \mathrm { k } \Omega Use nodal analysis to find V1V _ { 1 } and V2V _ { 2 } .  In the circuit shown below, let  \mathrm { V } _ { \mathrm { s } } = 3 \mathrm {~V} , \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 1.2 \mathrm { k } \Omega  Use nodal analysis to find  V _ { 1 }  and  V _ { 2 } .

(Essay)
4.7/5
(29)

the circuit shown below, let Vs=5V,R1=3kΩ,R2=2kΩ,R3=5kΩ,R4=1kΩ,gm=0.0005V _ { \mathrm { s } } = 5 V , R _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 1 \mathrm { k } \Omega , \mathrm { g } _ { \mathrm { m } } = 0.0005 (a) Write a node equation at node 1 by summing the currents away from node 1 . (b) Write a node equation at node 2 by summing the currents away from node 2 . (c) Solve the equations to find V1V _ { 1 } and V2V _ { 2 } . (d) Find the current through R4\mathrm { R } _ { 4 } (including direction) and power absorbed by R4\mathrm { R } _ { 4 } .  the circuit shown below, let  V _ { \mathrm { s } } = 5 V , R _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 1 \mathrm { k } \Omega , \mathrm { g } _ { \mathrm { m } } = 0.0005  (a) Write a node equation at node 1 by summing the currents away from node 1 . (b) Write a node equation at node 2 by summing the currents away from node 2 . (c) Solve the equations to find  V _ { 1 }  and  V _ { 2 } . (d) Find the current through  \mathrm { R } _ { 4 }  (including direction) and power absorbed by  \mathrm { R } _ { 4 } .

(Essay)
4.9/5
(32)

the circuit shown below, let Is1=2 mA,Is2=3 mA,R1=2.5kΩ,R2=6kΩ,R3=4kΩ\mathrm { I } _ { \mathrm { s } 1 } = 2 \mathrm {~mA} , \mathrm { I } _ { \mathrm { s } 2 } = 3 \mathrm {~mA} , \mathrm { R } _ { 1 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 4 \mathrm { k } \Omega Use nodal analysis to find V1V _ { 1 } and V2V _ { 2 } .  the circuit shown below, let  \mathrm { I } _ { \mathrm { s } 1 } = 2 \mathrm {~mA} , \mathrm { I } _ { \mathrm { s } 2 } = 3 \mathrm {~mA} , \mathrm { R } _ { 1 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 6 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 4 \mathrm { k } \Omega  Use nodal analysis to find  V _ { 1 }  and  V _ { 2 } .

(Essay)
4.8/5
(43)

In the circuit shown below, let Vs=7 V,R1=3kΩ,R2=2.5kΩ,R3=1kΩ,gm=0.0005\mathrm { V } _ { \mathrm { s } } = 7 \mathrm {~V} , \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega , \mathrm { g } _ { \mathrm { m } } = 0.0005 Use mesh analysis to find mesh currents I1I _ { 1 } and I2I _ { 2 } . Also, find V1V _ { 1 } and V2V _ { 2 } .  In the circuit shown below, let  \mathrm { V } _ { \mathrm { s } } = 7 \mathrm {~V} , \mathrm { R } _ { 1 } = 3 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 1 \mathrm { k } \Omega , \mathrm { g } _ { \mathrm { m } } = 0.0005  Use mesh analysis to find mesh currents  I _ { 1 }  and  I _ { 2 } . Also, find  V _ { 1 }  and  V _ { 2 } .

(Essay)
4.7/5
(38)

the circuit shown below,  (a) Write a node equation at node 1 by summing the currents away from node 1.\text { (a) Write a node equation at node } 1 \text { by summing the currents away from node } 1 . (b) Write a node equation at node 2 by summing the currents away from node 2.2 . (c) Solve the equations to find V1V _ { 1 } and V2V _ { 2 } . (d) Find the current through R1\mathrm { R } _ { 1 } (including direction) and power dissipated on R1\mathrm { R } _ { 1 } .  the circuit shown below,  \text { (a) Write a node equation at node } 1 \text { by summing the currents away from node } 1 .  (b) Write a node equation at node 2 by summing the currents away from node  2 .  (c) Solve the equations to find  V _ { 1 }  and  V _ { 2 } . (d) Find the current through  \mathrm { R } _ { 1 }  (including direction) and power dissipated on  \mathrm { R } _ { 1 } .

(Essay)
4.9/5
(40)

In the circuit shown below, let Vs=5 V,Is=2 mA,R1=1kΩ,R2=400Ω,R3=1.5kΩ,R4=2kΩ,R5=500ΩV _ { \mathrm { s } } = 5 \mathrm {~V} , \mathrm { I } _ { \mathrm { s } } = 2 \mathrm {~mA} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 400 \Omega , \mathrm { R } _ { 3 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 500 \Omega Use mesh analysis to find mesh currents I1,I2I _ { 1 } , I _ { 2 } , and I3I _ { 3 } . Also, find V1,V2V _ { 1 } , V _ { 2 } , and V3V _ { 3 } .  In the circuit shown below, let  V _ { \mathrm { s } } = 5 \mathrm {~V} , \mathrm { I } _ { \mathrm { s } } = 2 \mathrm {~mA} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 400 \Omega , \mathrm { R } _ { 3 } = 1.5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega , \mathrm { R } _ { 5 } = 500 \Omega  Use mesh analysis to find mesh currents  I _ { 1 } , I _ { 2 } , and  I _ { 3 } . Also, find  V _ { 1 } , V _ { 2 } , and  V _ { 3 } .

(Essay)
4.8/5
(32)

the circuit shown below, let Vs1=7V,Vs2=1V,R1=2kΩ,R2=1.2kΩ,R3=2.2kΩ,R4=1.5kΩ,R5=800Ω,R6=500V _ { s 1 } = 7 V , V _ { s 2 } = 1 V , R _ { 1 } = 2 \mathrm { k } \Omega , R _ { 2 } = 1.2 \mathrm { k } \Omega , R _ { 3 } = 2.2 \mathrm { k } \Omega , R _ { 4 } = 1.5 \mathrm { k } \Omega , R _ { 5 } = 800 \Omega , R _ { 6 } = 500 Ω\Omega . Use nodal analysis to find V1,V2V _ { 1 } , V _ { 2 } , and V3V _ { 3 } .  the circuit shown below, let  V _ { s 1 } = 7 V , V _ { s 2 } = 1 V , R _ { 1 } = 2 \mathrm { k } \Omega , R _ { 2 } = 1.2 \mathrm { k } \Omega , R _ { 3 } = 2.2 \mathrm { k } \Omega , R _ { 4 } = 1.5 \mathrm { k } \Omega , R _ { 5 } = 800 \Omega , R _ { 6 } = 500   \Omega . Use nodal analysis to find  V _ { 1 } , V _ { 2 } , and  V _ { 3 } .

(Essay)
4.9/5
(32)

In the circuit shown below, let Vs=10V,R1=1kΩ,R2=500Ω,R3=600Ω,R4=800Ω,R5=400Ω,k=0.2,gm=0.0004V _ { s } = 10 V , R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 500 \Omega , R _ { 3 } = 600 \Omega , R _ { 4 } = 800 \Omega , R _ { 5 } = 400 \Omega , k = 0.2 , g _ { m } = 0.0004 Use mesh analysis to find mesh currents I1,I2,I3\mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm { I } _ { 3 } , and I4\mathrm { I } _ { 4 } . Also, find V1, V2\mathrm { V } _ { 1 } , \mathrm {~V} _ { 2 } , and V3\mathrm { V } _ { 3 } .  In the circuit shown below, let  V _ { s } = 10 V , R _ { 1 } = 1 \mathrm { k } \Omega , R _ { 2 } = 500 \Omega , R _ { 3 } = 600 \Omega , R _ { 4 } = 800 \Omega , R _ { 5 } = 400 \Omega , k = 0.2 , g _ { m } = 0.0004  Use mesh analysis to find mesh currents  \mathrm { I } _ { 1 } , \mathrm { I } _ { 2 } , \mathrm { I } _ { 3 } , and  \mathrm { I } _ { 4 } . Also, find  \mathrm { V } _ { 1 } , \mathrm {~V} _ { 2 } , and  \mathrm { V } _ { 3 } .

(Essay)
4.9/5
(31)

the circuit shown below, (a) Write a node equation at node 1 by summing the currents leaving node 1 . (b) Write a node equation at node 2 by summing the currents leaving node 2.2 . (c) Find V1V _ { 1 } and V2V _ { 2 } by solving the two node equations. (d) Find the currents IR1,IR2,IR3,IR4,I5\mathrm { I } _ { \mathrm { R } 1 } , \mathrm { I } _ { \mathrm { R } 2 } , \mathrm { I } _ { \mathrm { R } 3 } , \mathrm { I } _ { \mathrm { R } 4 } , \mathrm { I } _ { 5 } . (e) Find the power absorbed by R1,R2,R3,R4\mathrm { R } _ { 1 } , \mathrm { R } _ { 2 } , \mathrm { R } _ { 3 } , \mathrm { R } _ { 4 } , and power released by Vs\mathrm { V } _ { \mathrm { s } } and Is\mathrm { I } _ { \mathrm { s } } .  the circuit shown below, (a) Write a node equation at node 1 by summing the currents leaving node 1 . (b) Write a node equation at node 2 by summing the currents leaving node  2 .  (c) Find  V _ { 1 }  and  V _ { 2 }  by solving the two node equations. (d) Find the currents  \mathrm { I } _ { \mathrm { R } 1 } , \mathrm { I } _ { \mathrm { R } 2 } , \mathrm { I } _ { \mathrm { R } 3 } , \mathrm { I } _ { \mathrm { R } 4 } , \mathrm { I } _ { 5 } . (e) Find the power absorbed by  \mathrm { R } _ { 1 } , \mathrm { R } _ { 2 } , \mathrm { R } _ { 3 } , \mathrm { R } _ { 4 } , and power released by  \mathrm { V } _ { \mathrm { s } }  and  \mathrm { I } _ { \mathrm { s } } .

(Essay)
4.7/5
(42)

the circuit shown below, let Is=1 mA, Vs=5 V,R1=1kΩ,R2=2.5kΩ,R3=5kΩ,R4=2kΩ\mathrm { I } _ { \mathrm { s } } = 1 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 5 \mathrm {~V} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega Use nodal analysis to find V1\mathrm { V } _ { 1 } and V2\mathrm { V } _ { 2 } .  the circuit shown below, let  \mathrm { I } _ { \mathrm { s } } = 1 \mathrm {~mA} , \mathrm {~V} _ { \mathrm { s } } = 5 \mathrm {~V} , \mathrm { R } _ { 1 } = 1 \mathrm { k } \Omega , \mathrm { R } _ { 2 } = 2.5 \mathrm { k } \Omega , \mathrm { R } _ { 3 } = 5 \mathrm { k } \Omega , \mathrm { R } _ { 4 } = 2 \mathrm { k } \Omega  Use nodal analysis to find  \mathrm { V } _ { 1 }  and  \mathrm { V } _ { 2 } .

(Essay)
4.8/5
(32)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)