Exam 15: Circuits Analysis in the S-Domain

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Assume L1=1H,L2=2H,C=0.5 F,R=1Ω\mathrm { L } _ { 1 } = 1 \mathrm { H } , \mathrm { L } _ { 2 } = 2 \mathrm { H } , \mathrm { C } = 0.5 \mathrm {~F} , \mathrm { R } = 1 \Omega in the circuit shown below. Find the transfer function H(s)=Vo(s)/Vin(s)\mathrm { H } ( \mathrm { s } ) = \mathrm { V } _ { \mathrm { o } } ( \mathrm { s } ) / \mathrm { V } _ { \mathrm { in } } ( \mathrm { s } )  Assume  \mathrm { L } _ { 1 } = 1 \mathrm { H } , \mathrm { L } _ { 2 } = 2 \mathrm { H } , \mathrm { C } = 0.5 \mathrm {~F} , \mathrm { R } = 1 \Omega  in the circuit shown below. Find the transfer function  \mathrm { H } ( \mathrm { s } ) = \mathrm { V } _ { \mathrm { o } } ( \mathrm { s } ) / \mathrm { V } _ { \mathrm { in } } ( \mathrm { s } )

Free
(Essay)
4.9/5
(35)
Correct Answer:
Verified

VaVinsL1+Va1sC+VaVoR=0fracVoVaR+VosL2=0H(s)=2ss3+0.5s2+3s+1\begin{array} { l } \frac { V _ { a } - V _ { i n } } { s L _ { 1 } } + \frac { V _ { a } } { \frac { 1 } { s C } } + \frac { V _ { a } - V _ { o } } { R } = 0 \\\\\\frac { V _ { o } - V _ { a } } { R } + \frac { V _ { o } } { s L _ { 2 } } = 0 \\\\H ( s ) = \frac { 2 s } { s ^ { 3 } + 0.5 s ^ { 2 } + 3 s + 1 }\end{array}

Plot the magnitude and phase Bode diagrams of the transfer function given by H(s)=(s+103)2(s+106)2100(s+104)2(s+105)2H ( s ) = \frac { \left( s + 10 ^ { 3 } \right) ^ { 2 } \left( s + 10 ^ { 6 } \right) ^ { 2 } } { 100 \left( s + 10 ^ { 4 } \right) ^ { 2 } \left( s + 10 ^ { 5 } \right) ^ { 2 } }

Free
(Essay)
4.7/5
(40)
Correct Answer:
Verified


Find the convolution y(t) of x(t) and h(t); that is, find y(t)=h(t)x(t)y ( t ) = h ( t ) * x ( t ) x(t)=u(t)u(t5),x ( t ) = u ( t ) - u ( t - 5 ) , h(t)=δ(t10)+δ(t12)h ( t ) = \delta ( t - 10 ) + \delta ( t - 12 )

Free
(Essay)
4.9/5
(29)
Correct Answer:
Verified

y(t)={1,10t<122,12t<151,15t<170, elsewhere y ( t ) = \left\{ \begin{array} { l l } 1 , & 10 \leq t < 12 \\2 , & 12 \leq t < 15 \\1 , & 15 \leq t < 17 \\0 , & \text { elsewhere }\end{array} \right.

In the circuit shown below, let R1=2Ω,R2=3Ω,C=0.1 F,v(0)=2 V,vs(t)=2u(t)\mathrm { R } _ { 1 } = 2 \Omega , \mathrm { R } _ { 2 } = 3 \Omega , \mathrm { C } = 0.1 \mathrm {~F} , \mathrm { v } \left( 0 ^ { - } \right) = 2 \mathrm {~V} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 2 \mathrm { u } ( \mathrm { t } ) Draw the circuit in the s-domain and find V(s)V ( s ) and v(t)v ( t ) for t0t \geq 0 .  In the circuit shown below, let  \mathrm { R } _ { 1 } = 2 \Omega , \mathrm { R } _ { 2 } = 3 \Omega , \mathrm { C } = 0.1 \mathrm {~F} , \mathrm { v } \left( 0 ^ { - } \right) = 2 \mathrm {~V} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 2 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find  V ( s )  and  v ( t )  for  t \geq 0 .

(Essay)
4.9/5
(26)

Find the convolution y(t) of x(t) and h(t); that is,  find y(t)=h(t)x(t)\text { find } y ( t ) = h ( t ) ^ { * } x ( t ) x(t)={3,0t<70, otherwise ,h(t)={2,0t<30, otherwise x ( t ) = \left\{ \begin{array} { c c } 3 , & 0 \leq t < 7 \\0 , & \text { otherwise }\end{array} , \quad h ( t ) = \left\{ \begin{array} { c c } 2 , & 0 \leq t < 3 \\0 , & \text { otherwise }\end{array} \right. \right.

(Essay)
5.0/5
(38)

Find the convolution y(t) of x(t) and h(t); that is, find y(t) = h(t)*x(t). x(t)=4e3tu(t),h(t)=2e5tu(t)x ( t ) = 4 e ^ { - 3 t } u ( t ) , \quad h ( t ) = 2 e ^ { - 5 t } u ( t )

(Essay)
4.8/5
(33)

Plot the magnitude and phase Bode diagrams of the transfer function given by H(s)=(s+103)2(s+104)2H ( s ) = \frac { \left( s + 10 ^ { 3 } \right) ^ { 2 } } { \left( s + 10 ^ { 4 } \right) ^ { 2 } }

(Essay)
4.9/5
(34)

Plot the magnitude and phase Bode diagrams of the transfer function given by H(s)=s+1000s+100H ( s ) = \frac { s + 1000 } { s + 100 }

(Essay)
4.9/5
(36)

Find the convolution y(t) of x(t) and h(t); that is, find y(t)=h(t)x(t)y ( t ) = h ( t ) ^ { * } x ( t ) x(t)=2cos(3t)u(t),h(t)=4cos(4t)u(t)x ( t ) = 2 \cos ( 3 t ) u ( t ) , \quad h ( t ) = 4 \cos ( 4 t ) u ( t )

(Essay)
4.7/5
(33)

In the circuit shown below, let R1=2Ω,R2=3Ω,L=2H,i(0)=2 A,vs(t)=3u(t)\mathrm { R } _ { 1 } = 2 \Omega , \mathrm { R } _ { 2 } = 3 \Omega , \mathrm { L } = 2 \mathrm { H } , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } ) Draw the circuit in the s-domain and find V(s)\mathrm { V } ( \mathrm { s } ) and v(t)\mathrm { v } ( \mathrm { t } ) for t0\mathrm { t } \geq 0 .  In the circuit shown below, let  \mathrm { R } _ { 1 } = 2 \Omega , \mathrm { R } _ { 2 } = 3 \Omega , \mathrm { L } = 2 \mathrm { H } , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find  \mathrm { V } ( \mathrm { s } )  and  \mathrm { v } ( \mathrm { t } )  for  \mathrm { t } \geq 0 .

(Essay)
4.8/5
(34)

Find the convolution y(t) of x(t) and h(t); that is,  find y(t)=h(t)x(t)\text { find } y ( t ) = h ( t ) ^ { * } x ( t ) x(t)=t2u(t),h(t)=u(t)x ( t ) = t ^ { 2 } u ( t ) , \quad h ( t ) = u ( t )

(Essay)
4.8/5
(34)

Find the convolution y(t) of x(t) and h(t); that is, find y(t) = h(t)*x(t). x(t)=tu(t),h(t)=tu(t)x ( t ) = t u ( t ) , \quad h ( t ) = t u ( t )

(Essay)
4.7/5
(42)

In the circuit shown below, let R1=1Ω,R2=4Ω,C=0.5 F, L=1H,v(0)=3 V,i(0)=1 A,vs(t)=4u(t)\mathrm { R } _ { 1 } = 1 \Omega , \mathrm { R } _ { 2 } = 4 \Omega , \mathrm { C } = 0.5 \mathrm {~F} , \mathrm {~L} = 1 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 3 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 1 \mathrm {~A} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 4 \mathrm { u } ( \mathrm { t } ) Draw the circuit in the s-domain and find V(s)V ( s ) and v(t)v ( t ) for t0t \geq 0 .  In the circuit shown below, let  \mathrm { R } _ { 1 } = 1 \Omega , \mathrm { R } _ { 2 } = 4 \Omega , \mathrm { C } = 0.5 \mathrm {~F} , \mathrm {~L} = 1 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 3 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 1 \mathrm {~A} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 4 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find  V ( s )  and  v ( t )  for  t \geq 0 .

(Essay)
4.7/5
(29)

Find the convolution y(t) of x(t) and h(t); that is, find y(t) = h(t)*x(t). x(t)=3sin(6t)u(t),h(t)=2cos(6t)u(t)x ( t ) = 3 \sin ( 6 t ) u ( t ) , \quad h ( t ) = 2 \cos ( 6 t ) u ( t )

(Essay)
4.9/5
(40)

Assume L=1H,C1=0.2 F,C2=0.5 F,R=1Ω\mathrm { L } = 1 \mathrm { H } , \mathrm { C } _ { 1 } = 0.2 \mathrm {~F} , \mathrm { C } _ { 2 } = 0.5 \mathrm {~F} , \mathrm { R } = 1 \Omega in the circuit shown below. Find the transfer function H(s) = Vo(s)/Vin(s).  Assume  \mathrm { L } = 1 \mathrm { H } , \mathrm { C } _ { 1 } = 0.2 \mathrm {~F} , \mathrm { C } _ { 2 } = 0.5 \mathrm {~F} , \mathrm { R } = 1 \Omega  in the circuit shown below. Find the transfer function H(s) = Vo(s)/Vin(s).

(Essay)
4.7/5
(36)

Plot the magnitude and phase Bode diagrams of the transfer function given by H(s)=105(s+100)(s+1000)(s+10000)H ( s ) = \frac { 10 ^ { 5 } ( s + 100 ) } { ( s + 1000 ) ( s + 10000 ) }

(Essay)
4.9/5
(34)

In the circuit shown below, let R1=3Ω,R2=1Ω,C=0.2 F, L=2H,v(0)=1 V,i(0)=3 A,is(t)=3u(t)\mathrm { R } _ { 1 } = 3 \Omega , \mathrm { R } _ { 2 } = 1 \Omega , \mathrm { C } = 0.2 \mathrm {~F} , \mathrm {~L} = 2 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 1 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 3 \mathrm {~A} , \mathrm { i } _ { \mathrm { s } } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } ) Draw the circuit in the s-domain and find V0(s)V _ { 0 } ( s ) and v0(t)v _ { 0 } ( t ) for t0t \geq 0 .  In the circuit shown below, let  \mathrm { R } _ { 1 } = 3 \Omega , \mathrm { R } _ { 2 } = 1 \Omega , \mathrm { C } = 0.2 \mathrm {~F} , \mathrm {~L} = 2 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 1 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 3 \mathrm {~A} , \mathrm { i } _ { \mathrm { s } } ( \mathrm { t } ) = 3 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find  V _ { 0 } ( s )  and  v _ { 0 } ( t )  for  t \geq 0 .

(Essay)
4.8/5
(33)

Plot the magnitude and phase Bode diagrams of the transfer function given by H(s)=s+100s+1000H ( s ) = \frac { s + 100 } { s + 1000 }

(Essay)
4.8/5
(39)

In the circuit shown below, let R1=3Ω,R2=1Ω,R3=2Ω,C=0.1 F, L=1H,v(0)=2 V,i(0)=2 A,vs(t)=2u(t)\mathrm { R } _ { 1 } = 3 \Omega , \mathrm { R } _ { 2 } = 1 \Omega , \mathrm { R } _ { 3 } = 2 \Omega , \mathrm { C } = 0.1 \mathrm {~F} , \mathrm {~L} = 1 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 2 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 2 \mathrm { u } ( \mathrm { t } ) Draw the circuit in the s-domain and find V(s)V ( s ) and v(t)v ( t ) for t0t \geq 0 .  In the circuit shown below, let  \mathrm { R } _ { 1 } = 3 \Omega , \mathrm { R } _ { 2 } = 1 \Omega , \mathrm { R } _ { 3 } = 2 \Omega , \mathrm { C } = 0.1 \mathrm {~F} , \mathrm {~L} = 1 \mathrm { H } , \mathrm { v } \left( 0 ^ { - } \right) = 2 \mathrm {~V} , \mathrm { i } \left( 0 ^ { - } \right) = 2 \mathrm {~A} , \mathrm { v } _ { \mathrm { s } } ( \mathrm { t } ) = 2 \mathrm { u } ( \mathrm { t } )  Draw the circuit in the s-domain and find  V ( s )  and  v ( t )  for  t \geq 0 .

(Essay)
4.8/5
(38)

Plot the magnitude and phase Bode diagrams of the transfer function given by H(s)=(s+104)2(s+105)2(s+103)2(s+106)2H ( s ) = \frac { \left( s + 10 ^ { 4 } \right) ^ { 2 } \left( s + 10 ^ { 5 } \right) ^ { 2 } } { \left( s + 10 ^ { 3 } \right) ^ { 2 } \left( s + 10 ^ { 6 } \right) ^ { 2 } }

(Essay)
4.7/5
(43)
Showing 1 - 20 of 26
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)