Exam 14: The Laplace Transform

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the inverse Laplace transform of F(s)=0.97s(s2+0.8s+0.97)F ( s ) = \frac { 0.97 } { s \left( s ^ { 2 } + 0.8 s + 0.97 \right) }

Free
(Essay)
4.7/5
(28)
Correct Answer:
Verified

f(t)={1e0.4t[cos(0.9t)+0.4444sin(0.9t)]}u(t)f ( t ) = \left\{ 1 - e ^ { - 0.4 t } [ \cos ( 0.9 t ) + 0.4444 \sin ( 0.9 t ) ] \right\} u ( t ) clear all;
syms tst s
F=(0.97)/(s(s2+0.8s+0.97))F = ( 0.97 ) / \left( s ^ { * } \left( s ^ { \wedge } 2 + 0.8 * s + 0.97 \right) \right)
clear all;
syms ts
E=(0.97)/(s(s2+0.8s+0.97))E = ( 0.97 ) / \left( s ^ { * } \left( s ^ { \wedge } 2 + 0.8 * s + 0.97 \right) \right)
f=1laplace(F)f = 1 l a p l a c e ( F )
f=simplify(f)
pretty(f)
f = vpa ( f , 7 )
f=1f = 1 laplace (E)
f=simplify (f)
pretty (f)
f = vpa(f , 7 )

Find the one-sided Laplace transform of f(t)=u(t+8)f ( t ) = u ( - t + 8 )

Free
(Essay)
4.9/5
(32)
Correct Answer:
Verified

F(s)=1se8ss=1e8ssF ( s ) = \frac { 1 } { s } - \frac { e ^ { - 8 s } } { s } = \frac { 1 - e ^ { - 8 s } } { s }

Find the one-sided Laplace transform of f(t)=e2t+10u(t4)f ( t ) = e ^ { - 2 t + 10 } u ( t - 4 )

Free
(Essay)
4.8/5
(39)
Correct Answer:
Verified

F(s)=e2e4ss+2F ( s ) = e ^ { 2 } \frac { e ^ { - 4 s } } { s + 2 }

Find the initial value and the final value of f(t) if F(s)=s+15s2(s2+4s+12)F ( s ) = \frac { s + 15 } { s ^ { 2 } \left( s ^ { 2 } + 4 s + 12 \right) }

(Essay)
4.7/5
(34)

Find the one-sided Laplace transform of f(t)=e(t+2.5)u(t+2.5)f ( t ) = e ^ { - ( t + 2.5 ) } u ( t + 2.5 )

(Essay)
4.9/5
(28)

Find the one-sided Laplace transform of f(t)=7cos(3t)u(t)+4sin(3t)u(t)f ( t ) = 7 \cos ( 3 t ) u ( t ) + 4 \sin ( 3 t ) u ( t )

(Essay)
4.8/5
(36)

Find the inverse Laplace transform of F(s)=16(s+1)(s+2)(s2+4s+20)F ( s ) = \frac { 16 ( s + 1 ) } { ( s + 2 ) \left( s ^ { 2 } + 4 s + 20 \right) }

(Essay)
4.7/5
(26)

Find the one-sided Laplace transform of f(t)=u(t)3u(t2)+7u(t5)4u(t7)f ( t ) = u ( t ) - 3 u ( t - 2 ) + 7 u ( t - 5 ) - 4 u ( t - 7 )

(Essay)
4.9/5
(39)

Find the inverse Laplace transform of F(s)=3s+25(s+5)2(s+7)F ( s ) = \frac { 3 s + 25 } { ( s + 5 ) ^ { 2 } ( s + 7 ) }

(Essay)
4.9/5
(35)

Find the one-sided Laplace transform of f(t)=5sin(2tπ4)u(t)f ( t ) = 5 \sin \left( 2 t - \frac { \pi } { 4 } \right) u ( t )

(Essay)
4.9/5
(28)

Find the initial value and the final value of f(t) if F(s)=s+12s(s2+2s+8)F ( s ) = \frac { s + 12 } { s \left( s ^ { 2 } + 2 s + 8 \right) }

(Essay)
4.7/5
(39)

Find the one-sided Laplace transform of f(t)=tu(t)2(t2)u(t2)+6(t5)u(t5)8(t7)u(t7)+4(t8)u(t8)f ( t ) = t u ( t ) - 2 ( t - 2 ) u ( t - 2 ) + 6 ( t - 5 ) u ( t - 5 ) - 8 ( t - 7 ) u ( t - 7 ) + 4 ( t - 8 ) u ( t - 8 )

(Essay)
4.8/5
(33)

Find the inverse Laplace transform of F(s)=2s+5s2+s+1.06F ( s ) = \frac { 2 s + 5 } { s ^ { 2 } + s + 1.06 }

(Essay)
4.8/5
(31)

Find the one-sided Laplace transform of f(t)=(t+3)u(t+6)f ( t ) = ( t + 3 ) u ( - t + 6 )

(Essay)
4.9/5
(38)

Find the inverse Laplace transform of F(s)=s2+6s+18s(s+3)(s+7)F ( s ) = \frac { s ^ { 2 } + 6 s + 18 } { s ( s + 3 ) ( s + 7 ) }

(Essay)
4.9/5
(37)

Find the one-sided Laplace transform of f(t)=e2(t+1.5)u(t+1.5)f ( t ) = e ^ { - 2 ( t + 1.5 ) } u ( t + 1.5 )

(Essay)
4.9/5
(35)

 Let f(t)=2cos(5t)u(t). Find the one-sided Laplace transform of f(t),g(t)=df(t)dt, and \text { Let } \mathrm { f } ( \mathrm { t } ) = 2 \cos ( 5 \mathrm { t } ) \mathrm { u } ( \mathrm { t } ) \text {. Find the one-sided Laplace transform of } \mathrm { f } ( \mathrm { t } ) , g ( t ) = \frac { d f ( t ) } { d t } \text {, and } h(t)=d2f(t)dt2h ( t ) = \frac { d ^ { 2 } f ( t ) } { d t ^ { 2 } }

(Essay)
4.8/5
(38)

Find the inverse Laplace transform of F(s)=6s+15(s+3)2(s+5)2F ( s ) = \frac { 6 s + 15 } { ( s + 3 ) ^ { 2 } ( s + 5 ) ^ { 2 } }

(Essay)
4.8/5
(30)

 Let f(t)=2u(t)2u(t6). Find the one-sided Laplace transform of f(t),g(t)=df(t)dt, and \text { Let } \mathrm { f } ( \mathrm { t } ) = 2 \mathrm { u } ( \mathrm { t } ) - 2 \mathrm { u } ( \mathrm { t } - 6 ) \text {. Find the one-sided Laplace transform of } \mathrm { f } ( \mathrm { t } ) , g ( t ) = \frac { d f ( t ) } { d t } \text {, and } h(t)=d2f(t)dt2h ( t ) = \frac { d ^ { 2 } f ( t ) } { d t ^ { 2 } }

(Essay)
4.9/5
(31)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)