Exam 4: More About Derivatives

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Let f(x)=ln(cschx)f ( x ) = \ln ( \operatorname { csch } x ) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.7/5
(46)

Let f(x)=sinh(x2)f ( x ) = \sinh \left( x ^ { 2 } \right) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(27)

Let f(x)=ln(tanhx)f ( x ) = \ln ( \tanh x ) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(42)

The linear approximation L(x)L ( x ) to f(x)=x3f ( x ) = \sqrt [ 3 ] { x } near x0=8x _ { 0 } = 8 is

(Multiple Choice)
4.9/5
(48)

Let y=log3(cotx)y = \log _ { 3 } ( \cot x ) Then yy ^ { \prime } is

(Multiple Choice)
4.8/5
(37)

Using implicit differentiation on eyx=x,ye ^ { y - x } = x , y ^ { \prime } is

(Multiple Choice)
4.7/5
(41)

Let f(x)=cot(ex)f ( x ) = \cot \left( e ^ { x } \right) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(36)

Let f(x)=ln(sechx)f ( x ) = \ln ( \operatorname { sech } x ) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(42)

Let f(x)=ln(x+3x2)f ( x ) = \ln \left( \frac { x + 3 } { x - 2 } \right) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(40)

Let y=ln(2x+y2)y = \ln \left( 2 x + y ^ { 2 } \right) Using implicit differentiation, yy ^ { \prime } is

(Multiple Choice)
4.7/5
(40)

Let f(x)=ln(coshx)f ( x ) = \ln ( \cosh x ) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.7/5
(31)

Let y=ueuy = \frac { u } { e ^ { u } } and u=3x.u = \frac { 3 } { x } . By the Chain Rule, dydx\frac { d y } { d x } is

(Multiple Choice)
4.8/5
(41)

Let y=u2u+3y = \frac { u - 2 } { u + 3 } and u=2x+1u = 2 x + 1 By the Chain Rule, dydx\frac { d y } { d x } is

(Multiple Choice)
4.9/5
(42)

Let y=3ueuy = 3 u e ^ { u } and u=2x+3u = 2 x + 3 By the Chain Rule, dydx\frac { d y } { d x } is

(Multiple Choice)
4.9/5
(33)

Let f(x)=ln(tanx)f ( x ) = \ln ( \tan x ) Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.7/5
(35)

Let f(x)=log2x2+5f ( x ) = \log _ { 2 } \sqrt { x ^ { 2 } + 5 } Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.8/5
(43)

Let y=ln(xy)y = \ln \left( \frac { x } { y } \right) Using implicit differentiation, yy ^ { \prime } is

(Multiple Choice)
4.7/5
(31)

Let y=u+1uy = u + \frac { 1 } { u } and u=x2+x1u = x ^ { 2 } + x - 1 By the Chain Rule, dydx\frac { d y } { d x } is

(Multiple Choice)
4.9/5
(44)

Let y=cos(x2x+1)y = \cos \left( x ^ { 2 } - x + 1 \right) . Then yy ^ { \prime } is

(Multiple Choice)
4.7/5
(37)

Let f(x)=3xsinhxf ( x ) = 3 ^ { - x } \sinh x Then f(x)f ^ { \prime } ( x ) is

(Multiple Choice)
4.9/5
(38)
Showing 81 - 100 of 100
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)