Exam 13: Double and Triple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the mass of the solid whose density is equal to twice the distance from the origin, which is below the plane z=4z = 4 and above the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and the xy plane.

(Multiple Choice)
4.8/5
(31)

Find the volume between the graph of the given function and the specified rectangle. f(x,y)=x2yf ( x , y ) = x ^ { 2 } y and R={(x,y):1x1 and 1y1}R = \{ ( x , y ) : - 1 \leq x \leq 1 \text { and } - 1 \leq \mathrm { y } \leq 1 \}

(Essay)
4.9/5
(43)

Evaluate the sum i=13j=12i2j\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 2 } i ^ { 2 } j

(Short Answer)
4.9/5
(38)

Write y=2y = 2 in spherical coordinates.

(Multiple Choice)
4.8/5
(24)

Let ρ(r,θ)=θπ2\rho ( r , \theta ) = \frac { \theta } { \pi ^ { 2 } } be a joint probability distribution function on the unit disk. What is the probability of an event occurring in the region bounded by the spiral r=θ4,0θπr = \frac { \theta } { 4 } , 0 \leq \theta \leq \pi and the x-axis?

(Essay)
4.8/5
(38)

Evaluate 0201+x21x+y1+y2zxdzdydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 + x ^ { 2 } } \int _ { 1 - x + y } ^ { 1 + y } 2 z x d z d y d x

(Essay)
4.8/5
(36)

Give the rectangular coordinates for the point with the cylindrical coordinates (2,π4,1)\left( \sqrt { 2 } , \frac { \pi } { 4 } , 1 \right)

(Multiple Choice)
4.8/5
(27)

Find the volume of the solid bounded by the graph of z=4x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } and the xy plane.

(Essay)
4.9/5
(40)

Evaluate the integral 0π2sin(x)sin(x)cos(cos(x))dydx\int _ { 0 } ^ { \frac { \pi } { 2 } } \int _ { - \sin ( x ) } ^ { \sin ( x ) } \cos ( \cos ( x ) ) d y d x

(Essay)
4.9/5
(36)

Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+y+z=1x + y + z = 1 , where the density is ρ(x,y,z)=12xy\rho ( x , y , z ) = 12 x y

(Multiple Choice)
4.9/5
(36)

Let T be the triangle with vertices (0,0), (2,4), and (2,0). Let the density at each point of T be equal to the point's distance from the x-axis. Find the mass of T.

(Essay)
4.9/5
(33)

Use cylindrical coordinates to find RdV\iiint _ { R } d V , where R={(r,θ,z):0θπ,0r4sin(θ), and 0z16r2}R = \left\{ ( r , \theta , z ) : 0 \leq \theta \leq \pi , 0 \leq \mathrm { r } \leq 4 \sin ( \theta ) , \text { and } 0 \leq \mathrm { z } \leq \sqrt { 16 - r ^ { 2 } } \right\}

(Essay)
4.7/5
(21)

Evaluate the sum i=13j=13k=12(kj)\sum _ { i = 1 } ^ { 3 } \sum _ { j = 1 } ^ { 3 } \sum _ { k = 1 } ^ { 2 } ( k - j )

(Essay)
4.9/5
(32)

Evaluate the sum i=12j=13k=12ijk\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } \sum _ { k = 1 } ^ { 2 } \frac { i j } { k }

(Essay)
4.9/5
(42)

Change x2+y2=zx ^ { 2 } + y ^ { 2 } = z into cylindrical coordinates.

(Essay)
5.0/5
(40)

Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=x2y3f ( x , y ) = x ^ { 2 } y ^ { 3 } and R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}

(Multiple Choice)
4.9/5
(34)

Use cylindrical coordinates to find RzdV\iiint _ { R } z d V , where R={(x,y,z):x2+y24, and 0zx2+y2}R = \left\{ ( x , y , z ) : x ^ { 2 } + y ^ { 2 } \leq 4 , \text { and } 0 \leq \mathrm { z } \leq x ^ { 2 } + y ^ { 2 } \right\}

(Essay)
4.8/5
(43)

Write y=2y = 2 in cylindrical coordinates.

(Essay)
4.8/5
(34)

The functions x=x(u,v)x = x ( u , v ) and y=y(u,v)y = y ( u , v ) are given to determine transformations from the xy-coordinate system to a uv-coordinate system. Find the Jacobian of the transformation. x=2u-v y=2u+v

(Short Answer)
4.7/5
(41)

Evaluate the following Rxyz2dV\iiint _ { R } x y z ^ { 2 } d V , where R={(x,y,z):0x1,0y3, and 1z1}R = \{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 3 , \text { and } - 1 \leq z \leq 1 \}

(Essay)
4.8/5
(36)
Showing 41 - 60 of 84
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)