Exam 13: Double and Triple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the mass of the solid whose density is equal to twice the distance from the origin, which is outside the sphere of radius 3 and inside the sphere of radius 5.

(Multiple Choice)
4.8/5
(35)

Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+4y+z=4x + 4 y + z = 4 , where the density is equal to the distance from the xz-plane.

(Essay)
4.7/5
(32)

Give the rectangular coordinates for the point with the spherical coordinates (4,π6,π4)\left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)

(Multiple Choice)
4.9/5
(33)

Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 01xxf(x,y)dydx\int _ { 0 } ^ { 1 } \int _ { - x } ^ { x } f ( x , y ) d y d x

(Essay)
4.8/5
(26)

Let D be the upper half of the unit disk. Assume it has density ρ(x,y)=x2+y2\rho ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } Find the mass of D.

(Essay)
4.7/5
(29)

Give the cylindrical coordinates for the point with the rectangular coordinates (1,1,1)( 1,1,1 )

(Essay)
4.7/5
(37)

Find the (signed) volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and Ω={(x,y):x2+y24}\Omega = \left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 4 \right\}

(Essay)
4.8/5
(32)

Find the area enclosed in one petal of r=sin(5θ)r = \sin ( 5 \theta )

(Multiple Choice)
4.9/5
(37)

Find the area enclosed in one petal of r=sin(3θ)r = \sin ( 3 \theta )

(Essay)
4.8/5
(29)

Set up the double integral R(y2x)3dA\iint _ { R } ( y - 2 x ) ^ { 3 } d A over the parallelogram with vertices (2, 1), (3, 3), (5, 2), and (6, 4) using the transformation u=y- v=y-2x

(Multiple Choice)
4.9/5
(43)

Evaluate the double integral Rx2ydA\iint _ { R } \frac { x ^ { 2 } } { y } d A where R={(x,y):0x2 and 1ye}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 1 \leq \mathrm { y } \leq e \}

(Essay)
4.8/5
(34)

Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 11x21f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { x ^ { 2 } } ^ { 1 } f ( x , y ) d y d x

(Multiple Choice)
4.8/5
(32)

Give the rectangular coordinates for the point with the spherical coordinates (3,π4,arccos(13))\left( \sqrt { 3 } , \frac { \pi } { 4 } , \arccos \left( \frac { 1 } { \sqrt { 3 } } \right) \right)

(Essay)
4.8/5
(40)

Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to XX , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}

(Essay)
4.7/5
(34)

Write the cylindrical equation r=16r = 16 in rectangular coordinates.

(Essay)
4.9/5
(34)

Evaluate the following Rxysin(z)dV\iiint _ { R } x y \sin ( z ) d V , where R={(x,y,z):0x1,0y2, and 0zπ2}R = \left\{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 2 , \text { and } 0 \leq z \leq \frac { \pi } { 2 } \right\}

(Essay)
4.8/5
(36)

Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to XX , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}

(Essay)
4.9/5
(33)

Evaluate the sum i=12j=13ij\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } i j

(Short Answer)
4.9/5
(35)

Evaluate the integral 012xx2xydydx\int _ { 0 } ^ { 1 } \int _ { 2 x } ^ { x ^ { 2 } } x y d y d x

(Essay)
4.8/5
(29)

Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to the point's distance from the x-axis. Find MyM _ { y } for T.

(Multiple Choice)
4.9/5
(25)
Showing 21 - 40 of 84
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)