Exam 13: Double and Triple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The functions x=x(u,v)x = x ( u , v ) and y=y(u,v)y = y ( u , v ) are given to determine transformations from the xy-coordinate system to a uv-coordinate system. Find the Jacobian of the transformation. x=uvx=uvy=vy = v

(Essay)
4.9/5
(38)

Find the volume between the graph of the given function and the specified rectangle. f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and R={(x,y):1x1 and 1y1}R = \{ ( x , y ) : - 1 \leq x \leq 1 \text { and } - 1 \leq \mathrm { y } \leq 1 \}

(Multiple Choice)
4.8/5
(37)

Evaluate the double integral Rxcos(xy)dA\iint _ { R } x \cos ( x y ) d A where R={(x,y):0xπ2 and 0y1}R = \left\{ ( x , y ) : 0 \leq x \leq \frac { \pi } { 2 } \text { and } 0 \leq \mathrm { y } \leq 1 \right\}

(Essay)
4.7/5
(37)

Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to yy , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}

(Essay)
4.7/5
(32)

A disk of radius 2 meters is covered with mites. At the edge of the disk their density is 10,000 mites per square meter and at the center the density is 20,000 mites per square meter. If the mite density varies linearly with the distance from the center, how many mites are in the disk?

(Essay)
4.8/5
(42)

Give the cylindrical coordinates for the point with the spherical coordinates (4,π6,π4)\left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)

(Essay)
4.9/5
(39)

Find the volume of the solid bounded above by the plane z=10x2yz = 10 - x - 2 y and below by the triangle with vertices (0, 0), (1, 0), and (0, 1) in the first quadrant of the xy plane.

(Multiple Choice)
4.9/5
(35)

Set up the double integral R(xy)2dA\iint _ { R } ( x - y ) ^ { 2 } d A over the trapezoidal region with vertices (0, 2), (0, 3), (2, 0), and (3, 0) using the transformation u=x+y v=x-y

(Essay)
4.8/5
(42)

Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to the point's distance from the x-axis. Find MxM _ { x } for T.

(Multiple Choice)
4.8/5
(40)

Find the signed volume between the graph of the given function and the specified rectangle. f(x,y)=xy+1f ( x , y ) = x y + 1 and R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}

(Essay)
4.7/5
(36)

Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 111x21x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } f ( x , y ) d y d x

(Essay)
4.9/5
(33)

Evaluate 3172x2+x24xx23xyz3dzdydx\int _ { 3 } ^ { 17 } \int _ { - 2 - x } ^ { 2 + x ^ { 2 } } \int _ { 4 x } ^ { x ^ { 2 } } 3 x y z ^ { 3 } d z d y d x

(Multiple Choice)
4.8/5
(36)

Rewrite the following integral, switching the order of the y and z integrations. 024x24x24x2y24x2y2f(x,y,z)dzdydx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { - \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } f ( x , y , z ) d z d y d x

(Essay)
4.8/5
(32)

Find the area enclosed by the spiral r=θr = \theta and the y-axis for π2θ3π2\frac { \pi } { 2 } \leq \theta \leq \frac { 3 \pi } { 2 }

(Essay)
4.8/5
(33)

Evaluate the double integral Rx2y3dA\iint _ { R } x ^ { 2 } y ^ { 3 } d A where R={(x,y):1x3 and 1y2}R = \{ ( x , y ) : 1 \leq x \leq 3 \text { and } - 1 \leq \mathrm { y } \leq 2 \}

(Multiple Choice)
4.8/5
(24)

The functions x=x(u,v)x = x ( u , v ) and y=y(u,v)y = y ( u , v ) are given to determine transformations from the xy-coordinate system to a uv-coordinate system. Find the Jacobian of the transformation. x=3u+2v y=u+v

(Short Answer)
4.9/5
(32)

Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Let the density at each point of T be equal to 1. Find IxI _ { x } for T.

(Essay)
4.8/5
(37)

Find the area between the cardioids r=5+5sin(θ)r = 5 + 5 \sin ( \theta ) and r=2+2sin(θ)r = 2 + 2 \sin ( \theta )

(Multiple Choice)
4.7/5
(40)

Let T be the triangle with vertices (0, 0), (2, 4), and (2, 0). Find the centroid of T.

(Essay)
4.8/5
(37)

Evaluate the following Rx2ysin(zy)dV\iiint _ { R } x ^ { 2 } y \sin ( z y ) d V , where R={(x,y,z):0x1,0y2, and 0zπ2}R = \left\{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 2 , \text { and } 0 \leq z \leq \frac { \pi } { 2 } \right\}

(Multiple Choice)
4.9/5
(37)
Showing 61 - 80 of 84
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)