Exam 10: Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Assume the segment with the endpoints (1,2,1)( 1 , - 2,1 ) and (4,2,2)( 4,2,2 ) is a diameter of a sphere. Give an equation of the sphere.

(Essay)
4.9/5
(32)

Find the line of intersection of the two planes given by x+y+z=4x + y + z = 4 and 2xy+z=32 x - y + z = 3

(Essay)
4.8/5
(41)

Find compuv\operatorname { com } p _ { \vec { u } } \vec { v } , projuv\operatorname { proj } _ { \vec { u } } \vec { v } , and the component of v\vec { v } orthogonal to u\vec { u } , where u=1,2,1 and v=1,1,1\vec { u } = \langle 1,2,1 \rangle \text { and } \vec { v } = \langle - 1,1 , - 1 \rangle

(Multiple Choice)
4.8/5
(34)

Find the norm of u=1,2\vec { u } = \langle 1,2 \rangle

(Essay)
4.9/5
(41)

For P=(1,3,9) and Q=(7,6,2)P = ( - 1,3,9 ) \text { and } Q = ( 7,6,2 ) , find PQ\overrightarrow { P Q }

(Essay)
4.9/5
(35)

Find a vector perpendicular to the plane determined by the points P(1,2,3),Q(4,5,6), and R(1,1,1)P ( 1,2,3 ) , Q ( 4,5,6 ) \text {, and } R ( 1,1 , - 1 ) , whose third coordinate is 1.

(Essay)
4.7/5
(36)

Find the volume of the parallelepiped determined by u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle

(Essay)
4.8/5
(38)

Find the dot product of u=1,2,1\vec { u } = \langle 1,2,1 \rangle and v=2,2,1\vec { v } = \langle 2,2,1 \rangle and the cosine of the angle between them.

(Multiple Choice)
4.8/5
(34)

Find an equation for the plane containing the points (1,2,3),(3,1,1), and (1,3,2)( 1,2,3 ) , ( 3,1,1 ) \text {, and } ( - 1,3,2 )

(Essay)
4.9/5
(39)

Find the equation of the sphere with the center (1,2,3)( 1,2,3 ) containing the origin.

(Essay)
4.8/5
(42)

Find the center and radius of the sphere with the equation x22x+y24y+z2+1=0x ^ { 2 } - 2 x + y ^ { 2 } - 4 y + z ^ { 2 } + 1 = 0

(Essay)
4.8/5
(34)

Find an equation for the plane containing the lines r1(t)=1,2,3+t1,1,2\vec { r } _ { 1 } ( t ) = \langle 1,2,3 \rangle + t \langle 1 , - 1,2 \rangle r2(t)=0,1,2+t2,2,4\vec { r } _ { 2 } ( t ) = \langle 0,1,2 \rangle + t \langle - 2,2 , - 4 \rangle

(Essay)
4.9/5
(44)

Give an equation of the line containing the points (1,3,2) and (2,1,4)( 1,3,2 ) \text { and } ( 2,1,4 ) as vector parameterization.

(Essay)
4.7/5
(41)

Find the area of the triangle with vertices P(0,0,0),Q(1,2,3), and R(1,2,1)P ( 0,0,0 ) , Q ( 1,2,3 ) , \text { and } R ( 1,2,1 )

(Essay)
4.8/5
(24)

For u=1,2,3\vec { u } = \langle 1,2,3 \rangle , v=1,1,1\vec { v } = \langle - 1,1 , - 1 \rangle , and w=1,2,1\vec { w } = \langle 1,2,1 \rangle , find u(v×w)\vec { u } \cdot ( \vec { v } \times \vec { w } )

(Essay)
4.9/5
(33)

Find an equation for the plane that contains the point (1,3,7)( 1,3,7 ) and the line r(t)=2,1,0+t1,1,2\vec { r } ( t ) = \langle 2,1,0 \rangle + t \langle 1,1,2 \rangle

(Essay)
4.9/5
(44)

Find the center and radius of the sphere with the equation x2+2x+y22y+z24z+5=0x ^ { 2 } + 2 x + y ^ { 2 } - 2 y + z ^ { 2 } - 4 z + 5 = 0

(Multiple Choice)
4.9/5
(41)

Find an equation for the plane containing the points (2,1,1),(3,2,7), and (4,3,1)( 2,1 , - 1 ) , ( 3,2,7 ) \text {, and } ( 4,3,1 )

(Essay)
4.7/5
(35)

Find the distance from the point (1,1,2)( 1,1,2 ) to the line r(t)=0,1,3+t1,2,1\vec { r } ( t ) = \langle 0 , - 1,3 \rangle + t \langle 1,2,1 \rangle

(Essay)
4.7/5
(38)

For P=(1,2,1) and Q=(4,2,2)P = ( 1,2,1 ) \text { and } Q = ( - 4,2,2 ) , find PQ\overrightarrow { P Q }

(Essay)
4.9/5
(40)
Showing 61 - 80 of 90
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)