Exam 9: Parametric Equations Polar Coordinates and Conic Sections

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3sint,y=4cost,t[0,2π]x = 3 \sin t , \quad y = 4 \cos t , \quad t \in [ 0,2 \pi ]

(Multiple Choice)
4.8/5
(36)

Write the equation of the ellipse with foci (-1, 1) and (-1, 3) and length of minor axis 4.

(Essay)
4.9/5
(37)

Convert the equation r=3cosθr = 3 \cos \theta to rectangular coordinates.

(Multiple Choice)
4.9/5
(35)

Find the rectangular coordinates for the following points whose polar coordinates are given: A .(2, - π\pi /2) B.(2, -3 π\pi /2) C .(2, π\pi /3) D .(2, π\pi )

(Essay)
4.8/5
(29)

Find the equation of a parabola with focus (0, 4) and vertex (0, 0).

(Essay)
4.9/5
(42)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t+1,y=3t,t[1,3]x = 2 t + 1 , \quad y = 3 t , \quad t \in [ - 1,3 ]

(Multiple Choice)
4.9/5
(39)

Find the length of the parametric curve: x=2sin2t,y=3cos2t,t[0,3π2]x = 2 \sin ^ { 2 } t , \quad y = 3 \cos ^ { 2 } t , \quad \mathrm { t } \in \left[ 0 , \frac { 3 \pi } { 2 } \right]

(Multiple Choice)
4.9/5
(39)

Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=1+sinθ and r=1sinθr = 1 + \sin \theta \text { and } r = 1 - \sin \theta

(Essay)
4.9/5
(44)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=cos2t,y=3sin2t,t[0,π2]x = \cos ^ { 2 } t , \quad y = 3 \sin ^ { 2 } t , \quad t \in \left[ 0 , \frac { \pi } { 2 } \right]

(Multiple Choice)
4.9/5
(32)

Convert the equation y = x + 2 to polar coordinates.

(Essay)
4.7/5
(31)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=4t,y=3t+1,t[2,1]x = - 4 t , \quad y = - 3 t + 1 , \quad t \in [ - 2,1 ]

(Multiple Choice)
4.8/5
(35)

Convert the equation r=2cscθr = - 2 \csc \theta to rectangular coordinates.

(Multiple Choice)
4.8/5
(31)

Find the equation of the hyperbola with foci (±3,0)( \pm 3,0 ) and asymptotes y = ±2x\pm 2 x

(Essay)
4.8/5
(41)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.x = e2t, y = t, t ? 0

(Multiple Choice)
4.9/5
(30)

Find the polar coordinates of the point (4, 4 3\sqrt { 3 } ) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

(Multiple Choice)
4.8/5
(34)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t+1,y=et,t(,)x = t + 1 , \quad y = e ^ { t } , \quad t \in ( - \infty , \infty )

(Multiple Choice)
4.8/5
(32)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3t+1,y=9t22,t(,)x = 3 t + 1 , \quad y = 9 t ^ { 2 } - 2 , \quad t \in ( - \infty , \infty )

(Multiple Choice)
4.8/5
(33)

Find a definite integral expression that represents the area of the region inside the circle r=3sinθr = 3 \sin \theta and outside the cardioid r=1+sinθr = 1 + \sin \theta Then find the exact value of the integral.

(Essay)
4.9/5
(38)

Find the polar coordinates of the point (0, -2) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

(Multiple Choice)
4.7/5
(26)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t,y=3t2,t(,)x = t , \quad y = 3 t ^ { 2 } , \quad t \in ( - \infty , \infty )

(Multiple Choice)
4.7/5
(32)
Showing 41 - 60 of 63
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)