Exam 9: Parametric Equations Polar Coordinates and Conic Sections

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2sint,y=2cost,t[0,2π]x = 2 \sin t , \quad y = 2 \cos t , \quad t \in [ 0,2 \pi ]

(Multiple Choice)
4.9/5
(38)

Describe the conic: x2+4x+y28y24=0x ^ { 2 } + 4 x + y ^ { 2 } - 8 y - 24 = 0

(Essay)
4.7/5
(41)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=cost,y=cos2t,t[0,π]x = \cos t , \quad y = \cos 2 t , \quad t \in [ 0 , \pi ]

(Multiple Choice)
4.7/5
(29)

Find a definite integral expression that represents the area of the region inside r=1+cosθr = 1 + \cos \theta Then find the exact value of the integral.

(Essay)
4.9/5
(29)

Convert the equation θ=π3\theta = \frac { \pi } { 3 } to rectangular coordinates.

(Multiple Choice)
4.9/5
(29)

Convert the equation y = 4 to polar coordinates.

(Multiple Choice)
4.7/5
(34)

Find the polar coordinates of the point (-3, 0) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

(Multiple Choice)
4.8/5
(39)

Find all the points of intersection of the curves, for 0θ<2π0 \leq \theta < 2 \pi : r=sinθ and r=cosθr = \sin \theta \text { and } r = \cos \theta

(Essay)
4.9/5
(32)

Convert the equation r=5secθr = 5 \sec \theta to rectangular coordinates.

(Multiple Choice)
4.8/5
(39)

Find the rectangular coordinates for the following points whose polar coordinates are given: A .(3, π\pi /6) B. (-3, π\pi /2) C. (3, 3 π\pi /2) D. (3, - π\pi /6)

(Essay)
4.9/5
(34)

Write the equation of the ellipse with foci (0,±3)( 0 , \pm 3 ) and length of minor axis 8.

(Essay)
4.9/5
(33)

Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=2sin2θ and r=1r = 2 \sin 2 \theta \text { and } r = 1

(Essay)
4.8/5
(40)

Find the equation of the tangent line to the parametric curve: x=t+1,y=e2t, at t=0x = t + 1 , \quad y = e ^ { 2 t } , \quad \text { at } t = 0

(Multiple Choice)
4.9/5
(39)

Find the polar coordinates of the point (23,2)( - 2 \sqrt { 3 } , 2 ) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

(Multiple Choice)
5.0/5
(40)

Find the length of the parametric curve: x=e2tcost,y=e2tsint,t[0,1]x = e ^ { 2 t } \cos t , \quad y = e ^ { 2 t } \sin t , \quad \mathrm { t } \in [ 0,1 ]

(Multiple Choice)
4.9/5
(28)

Write the equation of the ellipse with foci (±2,0)( \pm 2,0 ) and length of major axis 6.

(Essay)
4.8/5
(39)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t1,y=2t+5,t(,)x = t - 1 , \quad y = 2 t + 5 , \quad t \in ( - \infty , \infty )

(Multiple Choice)
4.8/5
(36)

Find a definite integral expression that represents the area of the region inside one loop of the lemniscate r2=sin2θr ^ { 2 } = \sin 2 \theta Then find the exact value of the integral.

(Essay)
4.8/5
(41)

Find a definite integral expression that represents the area of the region inside both the cardioid r=1+sinθr = 1 + \sin \theta and outside the cardioid r=1sinθr = 1 - \sin \theta Then find the exact value of the integral.

(Essay)
4.8/5
(21)

Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=1sinθ and r=1+cosθr = 1 - \sin \theta \text { and } r = 1 + \cos \theta

(Essay)
4.9/5
(37)
Showing 21 - 40 of 63
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)