Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the volume under Find the volume under   and above the region bounded by   and   . and above the region bounded by Find the volume under   and above the region bounded by   and   . and Find the volume under   and above the region bounded by   and   . .

Free
(Multiple Choice)
5.0/5
(26)
Correct Answer:
Verified

A

Calculate the iterated integral. Calculate the iterated integral.

Free
(Essay)
4.8/5
(43)
Correct Answer:
Verified

Find the center of mass of the system comprising masses mk located at the points Pk in a coordinate plane. Assume that mass is measured in grams and distance is measured in centimeters. m1 = 4, m2 = 3, m3 = 2 P1(-3, -3), P2(0, 3), P3(-2, -1)

Free
(Essay)
4.9/5
(34)
Correct Answer:
Verified

Use a double integral to find the area of the region R where R is bounded by the circle Use a double integral to find the area of the region R where R is bounded by the circle

(Multiple Choice)
4.9/5
(37)

Find the Jacobian of the transformation. Find the Jacobian of the transformation.

(Short Answer)
4.8/5
(38)

Evaluate the triple integral. Round your answer to one decimal place. Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . lies under the plane Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . and above the region in the Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . -plane bounded by the curves Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . , and Evaluate the triple integral. Round your answer to one decimal place.     lies under the plane   and above the region in the   -plane bounded by the curves   , and   . .

(Essay)
4.8/5
(35)

Evaluate the integral by changing to polar coordinates. Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis. Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis. is the region bounded by the semicircle Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis. and the Evaluate the integral by changing to polar coordinates.     is the region bounded by the semicircle   and the   -axis. -axis.

(Essay)
4.7/5
(28)

Calculate the double integral. Round your answer to two decimal places. Calculate the double integral. Round your answer to two decimal places.

(Essay)
4.7/5
(29)

Calculate the double integral. Round your answer to two decimal places. Calculate the double integral. Round your answer to two decimal places.

(Essay)
4.7/5
(33)

Find the area of the surface. The part of the surface Find the area of the surface. The part of the surface   that lies within the cylinder   . that lies within the cylinder Find the area of the surface. The part of the surface   that lies within the cylinder   . .

(Essay)
4.8/5
(37)

Evaluate the double integral. Evaluate the double integral.     is bounded by   and   . Evaluate the double integral.     is bounded by   and   . is bounded by Evaluate the double integral.     is bounded by   and   . and Evaluate the double integral.     is bounded by   and   . .

(Essay)
4.8/5
(43)

Use spherical coordinates to find the moment of inertia of the solid homogeneous hemisphere of radius Use spherical coordinates to find the moment of inertia of the solid homogeneous hemisphere of radius   and density 1 about a diameter of its base. and density 1 about a diameter of its base.

(Multiple Choice)
4.8/5
(37)

A swimming pool is circular with a A swimming pool is circular with a   -ft diameter. The depth is constant along east-west lines and increases linearly from   ft at the south end to   ft at the north end. Find the volume of water in the pool. -ft diameter. The depth is constant along east-west lines and increases linearly from A swimming pool is circular with a   -ft diameter. The depth is constant along east-west lines and increases linearly from   ft at the south end to   ft at the north end. Find the volume of water in the pool. ft at the south end to A swimming pool is circular with a   -ft diameter. The depth is constant along east-west lines and increases linearly from   ft at the south end to   ft at the north end. Find the volume of water in the pool. ft at the north end. Find the volume of water in the pool.

(Multiple Choice)
4.7/5
(30)

An electric charge is spread over a rectangular region An electric charge is spread over a rectangular region   Find the total charge on R if the charge density at a point   in R (measured in coulombs per square meter) is  Find the total charge on R if the charge density at a point An electric charge is spread over a rectangular region   Find the total charge on R if the charge density at a point   in R (measured in coulombs per square meter) is  in R (measured in coulombs per square meter) is An electric charge is spread over a rectangular region   Find the total charge on R if the charge density at a point   in R (measured in coulombs per square meter) is

(Multiple Choice)
4.7/5
(25)

Evaluate the double integral Evaluate the double integral   , where  , where Evaluate the double integral   , where

(Short Answer)
4.9/5
(35)

Evaluate the double integral Evaluate the double integral   , where   is the triangular region with vertices     and   . , where Evaluate the double integral   , where   is the triangular region with vertices     and   . is the triangular region with vertices Evaluate the double integral   , where   is the triangular region with vertices     and   . Evaluate the double integral   , where   is the triangular region with vertices     and   . and Evaluate the double integral   , where   is the triangular region with vertices     and   . .

(Essay)
4.7/5
(33)

Evaluate the integral Evaluate the integral   by changing to polar coordinates. by changing to polar coordinates.

(Essay)
4.8/5
(28)

Evaluate the integral by reversing the order of integration. Evaluate the integral by reversing the order of integration.

(Essay)
4.9/5
(30)

Find the mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola Find the mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola   and the line   .  and the line Find the mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola   and the line   .  . Find the mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola   and the line   .

(Multiple Choice)
4.8/5
(31)

Calculate the double integral. Calculate the double integral.

(Multiple Choice)
4.8/5
(42)
Showing 1 - 20 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)