Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the double integral by first identifying it as the volume of a solid. R(152x)dA,R={(x,y)3x7,4y5}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 3 \leq x \leq 7,4 \leq y \leq 5 \}

(Multiple Choice)
4.8/5
(38)

Calculate the iterated integral. 010y9cos(y2)dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { y } 9 \cos \left( y ^ { 2 } \right) d x d y

(Short Answer)
4.8/5
(40)

Find the moment of inertia with respect to a diameter of the base of a solid hemisphere of radius 3 with constant mass density function ρ(x,y,z)=5\rho ( x , y , z ) = 5

(Short Answer)
4.9/5
(31)

Find the area of the surface S where S is the part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies to the right of the xz-plane and inside the cylinder x2+z2=9x ^ { 2 } + z ^ { 2 } = 9

(Short Answer)
4.9/5
(39)

Find the volume of the solid bounded by the surface z=5+(x4)2+2yz = 5 + ( x - 4 ) ^ { 2 } + 2 y and the planes x=3,y=4x = 3 , y = 4 and coordinate planes.

(Multiple Choice)
4.8/5
(36)

Find the moment of inertia about the y-axis for a cube of constant density 3 and side length 66 if one vertex is located at the origin and three edges lie along the coordinate axes.

(Short Answer)
4.8/5
(32)

Express the integral as an iterated integral of the form abu(x)v(x)c(x,y)d(x,y)fdzdydx\int _ { a } ^ { b } \int _ { u ( x ) } ^ { v ( x ) } \int _ { c ( x , y ) } ^ { d ( x , y ) } f d z d y d x where E is the solid bounded by the surfaces x2=1y,z=3, and z=yx ^ { 2 } = 1 - y , z = 3 \text {, and } z = y \text {. } Ef(x,y,z)dV\iiint _ { E } f ( x , y , z ) d V

(Short Answer)
4.8/5
(38)

Use spherical coordinates. Evaluate B(x2+y2+z2)2dV\iiint _ { B } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } d V , where BB is the ball with center the origin and radius 55 .

(Multiple Choice)
4.8/5
(39)

Evaluate the triple integral. Round your answer to one decimal place. z5xdVE={(x,y,z)0y3,0x9y2,0zy}\iiint _ { z } 5 x d V E = \left\{ ( x , y , z ) \mid 0 \leq y \leq 3,0 \leq x \leq \sqrt { 9 - y ^ { 2 } } , 0 \leq z \leq y \right\}

(Short Answer)
4.7/5
(46)

Find the mass of the solid S bounded by the paraboloid z=6x2+6y2z = 6 x ^ { 2 } + 6 y ^ { 2 } and the plane z=5z = 5 if S has constant density 3.

(Multiple Choice)
4.7/5
(26)

Estimate the volume of the solid that lies above the square R=[0,4]×[0,4]R = [ 0,4 ] \times [ 0,4 ] and below the elliptic paraboloid f(x,y)=68x2y2f ( x , y ) = 68 - x ^ { 2 } - y ^ { 2 } . Divide RR into four equal squares and use the Midpoint rule.

(Multiple Choice)
4.7/5
(33)

The double integral R(1y2)dA\iint _ { R } \left( 1 - y ^ { 2 } \right) d A , where R={(x,y)0xy,0y1}R = \{ ( x , y ) \mid 0 \leq x \leq y , 0 \leq y \leq 1 \} , gives the volume of a solid. Describe the solid.

(Short Answer)
4.9/5
(32)

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where E is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xy-plane and below the plane z=x+4z = x + 4 .

(Multiple Choice)
4.8/5
(32)

Find the mass of a solid hemisphere of radius 5 if the mass density at any point on the solid is directly proportional to its distance from the base of the solid.

(Multiple Choice)
4.8/5
(34)

Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where R is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas y=2,xy=4;x=uv,y=vy = 2 , x y = 4 ; x = \frac { u } { v } , y = v .

(Multiple Choice)
4.9/5
(37)

Calculate the double integral. Round your answer to two decimal places. RxyeydA,R={(x,y)0x2,0y2}\iint _ { R } x y e ^ { y } d A , R = \{ ( x , y ) \mid 0 \leq x \leq 2,0 \leq y \leq 2 \}

(Short Answer)
4.8/5
(26)

Use the Midpoint Rule with four squares of equal size to estimate the double integral. Rcos(x4+y4)dA,R={(x,y)0x0.4,0y0.4}\iint _ { R } \cos \left( x ^ { 4 } + y ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 0.4,0 \leq y \leq 0.4 \}

(Multiple Choice)
4.7/5
(24)

Use a computer algebra system to find the moment of inertia I0I _ { 0 } of the lamina that occupies the region D and has the density function ρ(x,y)=3xy\rho ( x , y ) = 3 x y , if D={(x,y)0xπ,0ysin(x)}D = \{ ( x , y ) \mid 0 \leq x \leq \pi , 0 \leq y \leq \sin ( x ) \} .

(Multiple Choice)
4.7/5
(31)

Sketch the solid whose volume is given by the iterated integral 0202x02xyf(x,y,z)dzdydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 2 - x } \int _ { 0 } ^ { 2 - x - y } f ( x , y , z ) d z d y d x

(Short Answer)
4.7/5
(39)

Use spherical coordinates to find the moment of inertia of the solid homogeneous hemisphere of radius 55 and density 1 about a diameter of its base.

(Multiple Choice)
4.9/5
(34)
Showing 61 - 80 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)